Smart contracts, with their immense flexibility, manage significant amounts of value and data, executing immutable logic based on code deployed on the blockchain. This has led to a flourishing ecosystem of trustless and decentralized applications, offering numerous advantages over traditional systems. However, this also presents opportunities for attackers to exploit vulnerabilities in these smart contracts.
In Q3 of 2023 alone, the crypto industry was hit hard with losses totaling $720 million, with reentrancy and flash loan attacks being major contributors. These attacks, which accounted for $85 million and $5.8 million, respectively, highlight the intricate and technical nature of threats facing smart contracts.
To counter these threats, we will guide you through the various stages of secure smart contract development, providing practical advice and comprehensive guidelines for enhanced security.
Smart contract security refers to the measures and practices used to protect smart contracts from vulnerabilities and attacks in blockchain networks. This includes preventing vulnerabilities at every stage – design, development, testing, deployment, and ongoing maintenance – ensuring that the contracts function properly, handle transactions securely, and reliably execute their programmed logic without risk of manipulation or error.
This security is crucial because it protects against financial loss, maintains operational continuity, and upholds trust in decentralized systems. Effective security measures include rigorous coding practices, comprehensive testing, vigilant deployment strategies, and ongoing monitoring and updates.
The goal is to minimize risks and guarantee that smart contracts operate as intended, without being vulnerable to attacks or failures.
Transitioning from the general overview, let’s explore the critical phases of developing secure smart contracts.
Developing secure smart contracts involves several key phases, each of which requires careful attention and understanding.
In each phase, we’ll incorporate real-world examples and insights to make these complex aspects of smart contract development easier to understand and implement, whether you’re a seasoned Web3 developer or a curious entrepreneur.
Designing secure smart contracts necessitates a comprehensive understanding of several foundational concepts, as well as a commitment to certain design principles.
function UniV3SwapInput(
bytes memory _path,
uint256 _sellAmount
) public override onlyBalancer {
IV3SwapRouter.ExactInputParams memory params = IV3SwapRouter
.ExactInputParams({
path: _path,
recipient: address(this),
amountIn: _sellAmount,
amountOutMinimum: 0
});
uniRouter.exactInput(params);
}
In this code fragment, a UniswapV3 swap operation is performed with _sellAmount as the input amount and amountOutMinimum set to zero. This setting, where the minimum number of output tokens (amountOutMinimum) is set to zero, can potentially lead to an issue commonly referred to as “slippage.”
In the context of decentralized exchanges like Uniswap, slippage signifies the discrepancy between the expected trade price and the actual executed trade price. It often surfaces during periods of high market volatility when market orders are used. Here, due to the absence of a lower limit, the trader could end up receiving less than anticipated due to market fluctuations.
Detecting such an issue can be tricky during testing, as it predominantly manifests in certain market conditions. For developers, spotting this kind of vulnerability is equally challenging. Despite thorough planning and rigorous testing, these subtleties can be overlooked, underscoring the vital role of auditing in the development process and the need for specialized auditors to uncover and address such concealed risks.
With your smart contract system’s architecture meticulously planned, the third-party services to be utilized fully comprehended, and the update strategy well-considered, you are now well-prepared to proceed with the development phase.
Beyond the frequently repeated secure development tips like:
I would like to add my own advice to this list:
The importance of thorough testing in smart contract development can’t be overstated. Given the immutable nature of smart contracts and the high-value transactions they handle, any overlooked bug or vulnerability can lead to irreversible consequences. Therefore, unit testing is crucial, ideally aiming for 100% code coverage. This ensures that every function, branch, and line of code has been validated, reducing the potential for unanticipated behavior or exploitations in the live environment.
To test the coverage of the Solidity code, I recommend using the Solidity Coverage plugin. It pairs effectively with the Solidity Gas Reporter (built-in for Hardhat and available as a standalone plugin for others), which helps you test the execution of your smart contracts, transaction costs, and other aspects across different networks.
I also strongly advocate for the use of mutation testing, a methodology where “mutations” or modifications are made to the system under test (SUT). This produces slightly different software versions, and testing these variants helps assess the ability of tests to detect changes, thus measuring the quality of the test suite and pinpointing under-tested software areas.
SuMo, specifically designed for Solidity-based smart contracts, serves as a great mutation testing tool. By injecting minor faults or “mutations” into the source code and assessing whether these alterations are picked up by test suites, SuMo can gauge the robustness of your tests. This exercise helps uncover weak spots in your tests and thereby enhances their overall quality.
SuMo stands out with its variety of mutation operators, both traditional and unique to Solidity, that can be toggled on or off depending on the project requirements. It also offers customization options for the mutation testing process, allowing the selection of specific contracts and tests for mutation. Moreover, SuMo’s testing interface is versatile and compatible with different testing frameworks and blockchain simulators.
See a pull request on GitHub for a deeper dive into SuMo: https://github.com/MorenaBarboni/SuMo-SOlidity-MUtator.
In addition to the practices above, using smart contract analysis tools such as Slither, Solgraph, Mythril, Echidna, MythX, and Semgrep is highly recommended. These tools aid in detecting potential vulnerabilities, visually representing contract dependencies, analyzing security properties, and scanning for known issues. Utilizing these tools allows for a thorough review of your contracts and enhances overall security.
Conducting security audits is another vital step in ensuring the robustness of your smart contracts. An audit provides a systematic examination of the contract’s code by an independent entity to identify any vulnerabilities or bugs. This process offers an added layer of assurance on the safety and integrity of the contracts before they’re deployed.
The deployment phase of a smart contract is as crucial as its development. The integrity of the deployment process significantly affects the security and operability of the contract. Thus, several considerations must be addressed to ensure a smooth and secure launch. Here are some general tips:
As we transition into the post-deployment stage, it’s crucial to recognize that maintaining security is not a one-time task that ends with the deployment of a smart contract. Rather, it’s an ongoing process that demands continuous monitoring and consistent maintenance. Here are some effective strategies for managing and maintaining the security of smart contracts that are already deployed:
In sum, the key to maintaining smart contract security lies in the perpetual cycle of monitoring, auditing, updating, and fostering a security-first culture within your team.
The five key stages—design, development, testing and reviewing, deployment, and maintenance—each demand its own unique security considerations. Thoughtful and robust design, diligent development, thorough testing, careful deployment, and ongoing maintenance are all critical aspects of this process. Furthermore, being informed about the latest vulnerabilities and leveraging the power of the community through initiatives like bug bounty programs can significantly bolster the security of your smart contracts.
Ultimately, the secure creation, deployment, and maintenance of smart contracts require an interplay of robust understanding, meticulous planning, comprehensive testing, and constant vigilance. The potential consequences of inadequate security—ranging from financial loss to reputational damage—emphasize the importance of these efforts. Equipped with these insights and practices, developers and teams can contribute to the realm of secure smart contracts in the continually evolving blockchain technology.
Be the first to receive our latest company updates, Web3 security insights, and exclusive content curated for the blockchain enthusiasts.
Table of contents
Tell us about your project
13 min read
Discover
18 min read
Discover
14 min read
Discover