
Customer: Whitebit
Date: 18 July, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Whitebit

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Tags Vesting; Staking

Platform EVM

Language Solidity

Methodology Link

Website https://whitebit.com

Changelog
29.05.2023 – Initial Review
30.06.2023 - Second Review
18.07.2023 - Third Review
24.07.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://whitebit.com


Table of contents
Introduction 5
System Overview 5
Executive Summary 6
Risks 7
Checked Items 8
Findings 11

Critical 11
High 11

H01. Integer Overflow 11
Medium 11

M01. Best Practice Violation: Unchecked Transfer 11
M02. Undocumented Functionality 12
M03. Division Before Multiplication 12
M04. Best Practice Violation: Checks-Effects-Interactions 13
M05. Uncontrolled Loop of Storage Interactions 13
M06. Insufficient Balance 13
M07. Access Control; Undocumented Functionality 14
M08. Integer Overflow 14
M09. Tx.origin As a Proxy for Msg.sender 15

Low 15
L01. Floating Pragma 15
L02. Missing Zero Address Validation 16
L03. Outdated Solidity Version 16
L04. Redundant Code 17
L05. Copy of Well-Known Contracts 17
L06. Missing Check 18
L07. Accumulation of Dust Values 18
L08. Redundant Code 19
L09. Inefficient Gas Model 19
L10. Wrong Check 20
L11. Copy of Well-Known Contracts 20

Informational 20
I01. Missing Events for Critical Value Updates 20
I02. Missing Event Indexed Parameters 21
I03. Boolean Equality 21
I04. Style Guide Violation: Order Of Layout 21
I05. Misleading Error Message 22
I06. Typo in Require Messages 22
I07. Variables That Can Be Set Immutable 22
I08. Functions That Can Be External 23
I09. Variables That Can Be Set Constant 23

Disclaimers 25
Appendix 1. Severity Definitions 26

Risk Levels 26

www.hacken.io
3



Impact Levels 27
Likelihood Levels 27
Informational 27

Appendix 2. Scope 28

www.hacken.io
4



Introduction

Hacken OÜ (Consultant) was contracted by Whitebit (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Whitebit is a suite of staking and vesting protocols with the following
contracts:

● FarmingRewards — a contract that rewards users for staking their
tokens. APY depends on the tokens provided by the owner and could not
be calculated before reward tokens are deposited.

● FarmingRewardsFactory — a factory contract responsible for deploying
new instances of FarmingRewards with some predefined values.

● Treasure — a contract for locking ERC20 tokens for a specific amount
of time.

● CustomOwnable — custom implementation of OpenZeppelin’s Ownable
without the ability to renounce ownership.

Privileged roles
● The owner of the FarmingRewardsFactory contract can change the lock

amount for new deployments and the unlock commission percent.
● The owner of the Treasure contract can change the fee recipient

address.

www.hacken.io
5



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● Development environment is configured
● Solidity Style Guide followed
● Efficient Gas model
● Updated Solidity version
● Best practices implemented

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● All possibilities are being tested.

Security score
As a result of the audit, the code contains 0 issues. The security score is
10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

29 May 2023 7 8 1 0

30 June 2023 5 6 0 0

www.hacken.io
6

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


18 July 2023 2 0 0 0

24 July 2023 0 0 0 0

Risks

● Users can create their own pools, becoming the owners and introducing
any token contracts as rewards and farming. A malicious contract can
be used for such tokens.

● The system uses the contracts timelock and WhiteSwapV2Factory, which
are out of scope and thus its logic cannot be verified.

www.hacken.io
7



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed M08

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed L05

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed L01

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed M02

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed M07

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed M05

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed M03

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
8



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not
Relevant

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed H01

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed H01

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed H01

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Not
Relevant

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed M06

Style Guide
Violation

Style guides and best practices should
be followed. Passed I05

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10



Findings

Critical

No critical severity issues were found.

High

H01. Data Consistency; Invalid Calculations

Impact High

Likelihood Medium

The contract FarmingRewards allows the owner to withdraw unused
rewards balance after the staking period has reached the end.

The contract can use the same token for both deposits and rewards
since it is not validated anywhere and the contract is not making
correct accounting of that in getRemainingRewardsForOwner().

Path: ./contracts/FarmingRewards.sol: getRemainingRewardsForOwner().

Recommendation: check the correct balances for rewards and deposits.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

Medium

M01. Best Practice Violation: Unchecked Transfer

Impact High

Likelihood Low

The ERC20 function transfer() is used repeatedly without the
SafeERC20 wrapper.

Tokens may not follow the ERC20 standard and return false in case of
transfer failure or not return any value at all. This can lead to a
Denial of Service or unexpected behavior when dealing with some
tokens. Hence, it is a best practice to use the SafeERC20 wrapper
when transferring tokens.

Paths:
./contracts/Treasure.sol: lock(), unlock().
./contracts/FarmingRewardsFactory.sol: deploy()

Recommendation: consider implementing the SafeERC20 library.

www.hacken.io
11

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20


Found in: bc97735

Status: Fixed (Revised commit: c0675f5).

M02. Undocumented Functionality

Impact Medium

Likelihood Medium

The check totalReward >= epochDuration compares tokens to time.

There is no apparent reason for this check and no documentation
explaining why this is implemented in the code.

Path:
./contracts/FarmingRewardsFactory.sol

Recommendation: provide clear documentation about this check and/or
update the code accordingly.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

M03. Floating Point Precision by Rounding Error

Impact Low

Likelihood High

The variable wsFeeAmount is calculated as a result of a division and
later multiplication.

Solidity uses 256-bit precision for representing numbers, but some
numbers cannot be accurately represented in 256 bits due to their
fractional components. As a result, when performing arithmetic
operations on such numbers, rounding errors may occur, leading to
inaccurate results.

Since Solidity language does not have floating point numbers,
performing divisions before multiplications result in a loss of
precision.

Path:
./contracts/Treasure.sol: unlock().

Recommendation: it is recommended to perform divisions after
multiplications to avoid loss of precision.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

www.hacken.io
12

https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply


M04. Best Practice Violation: Checks-Effects-Interactions

Impact High

Likelihood Low

State variables are updated after the external calls to the token
contract.

As explained in Solidity Security Considerations, it is best practice
to follow the checks-effects-interactions pattern when interacting
with external contracts to avoid reentrancy-related issues.

Paths:
./contracts/Treasure.sol: lock().
./contracts/FarmingRewards: farm(), withdraw().
./FarmingRewardsFactory: deploy() → ITreasure.lock() contains a token
contract call.

Recommendation: follow the checks-effects-interactions pattern when
interacting with external contracts.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

M05. Uncontrolled Loop of Storage Interactions

Impact Medium

Likelihood Medium

The method getRemainingRewardsForOwner() calls _earned() for every
account, whose number can be very high after some time.

The number of iterations of the loop in the function is uncontrolled
as it depends on stored data, and it can reach the block Gas limit.

Path:
./contracts/FarmingRewards: getRemainingRewardsForOwner().

Recommendation: it is recommended to provide the possibility to
separate the call in several transactions.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

M06. Insufficient Balance

Impact High

Likelihood Low

www.hacken.io
13

https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern


The contract FarmingRewards assumes that the expected amount of
reward tokens was transferred to the contract without verifying its
actual balance.

The deployment process will call the transferFrom() function from the
rewards token, but the rewards token can be any token compliant with
the ERC20 interface and the token can transfer fewer tokens than
expected (e.g. tokens with fees).

The FarmingRewards contract can not blindly trust the results of the
deployment process from the factory contract. It should check if the
data was correctly set and the expected amount of tokens was
transferred in the initialization.

Transferring fewer than expected tokens can result in insufficient
tokens balance for paying farm participants.

Path: ./contracts/FarmingRewards.sol: createEpoch().

Recommendation: check if the correct amount of rewards tokens was
transferred during initialization.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

M07. Access Control; Undocumented Functionality

Impact Medium

Likelihood Medium

An external contract, stored as timeLock, gets the ownership of
FarmingRewardsFactory.

The contract that acts as timeLock is out of scope, there is no
additional documentation or information about the contract, despite
having privileged access to several functions of the contract.

Path: ./contracts/FarmingRewardsFactory.sol: timeLock.

Recommendation: additional documentation about this contract/role
should be provided.

Found in: bc97735

Status: Mitigated (With Customer notice: The Timelock contract is set
to implement some methods of the FarmingRewardsFactoryContract to
provide the ability to change community variables through voting.)

M08. Integer Overflow

Impact High

www.hacken.io
14



Likelihood Low

endDate is set as the sum of startDate + epochDuration, which are
introduced by users. An overflow is possible in this situation.

An overflow happens when an arithmetic operation reaches the maximum
or minimum size of a type.

Integer overflow and underflow happen when a numerical operation
exceeds the maximum or minimum limit of the data type used to store
the value and return to 0. This can lead to unexpected and
potentially harmful behavior in a smart contract, such as reverts and
exceptions, and can be exploited by attackers to manipulate the
contract.

Path: ./contracts/FarmingRewardsFactory.sol: deploy().

Recommendation: it is recommended to use vetted safe math libraries
for arithmetic operations (OpenZeppelin’s SafeMath) or use a Solidity
Compiler equal or above 0.8.0, which reverts on underflows/overflows.
It can also be considered to add limits to those values.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

M09. Tx.origin As a Proxy for Msg.sender

Impact High

Likelihood Low

Using tx.origin to get the msg.sender of a function call is not
recommended since it only works for EOA users.

If any user wants to interact with the protocol via smart contract,
the farm() function will record the information of the EOA that
initiated the transaction instead of such smart contract. As a
consequence, there can be data consistency issues and confusions.

Path: ./contracts/FarmingRewards.sol: farm().

Recommendation: it is recommended to propagate msg.sender via
msgSender() from OpenZeppelin’s Context instead of using tx.origin.

Found in: 0be73ed

Status: Fixed (Revised commit: c0675f5)

Low

L01. Floating Pragma

Impact Medium

www.hacken.io
15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Context.sol


Likelihood Low

As stated in SWC-103, contracts should be deployed with the same
compiler version and flags that they have been tested with
thoroughly. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler
version that might introduce bugs that affect the contract system
negatively.

Path:
./contracts/*.sol

Recommendation: lock the pragma version in all contracts.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L02. Missing Zero Address Validation

Impact Low

Likelihood Low

Additional checks against the 0x0 address should be included in the
reported functions to avoid unexpected results.

Path:
./contracts/Treasure.sol: changeFeeRecipient(),

Recommendation: it is recommended to add zero address checks.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L03. Outdated Solidity Version

Impact Medium

Likelihood Low

Using an outdated compiler version can be problematic especially if
there are publicly disclosed bugs and issues that affect the current
compiler version.

Using the current version of Solidity is generally considered best
practice because it includes the latest updates and bug fixes. Newer
versions address security vulnerabilities that may have been
discovered in previous versions, making them more secure to use.
Additionally, newer versions include new features and improvements
that make writing and deploying smart contracts easier and more
efficient. Using an outdated version of Solidity may expose your

www.hacken.io
16

https://swcregistry.io/docs/SWC-103


contracts to potential security risks and make it more difficult to
take advantage of newer features and capabilities.

Paths:
./contracts/*

Recommendation: consider using an up-to-date compiler version
(SWC-102).

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

L04. Redundant Code

Impact Medium

Likelihood Low

In some places of the code there are redundant checks that are
already checked somewhere else and do not need to be checked again.

The lock() function from Treasure contract checks the account balance
and allowance for the contract, but ERC20 transferFrom will already
fail due to insufficient balance or insufficient allowance if
applicable.

The farm() function from the FarmingRewards contract checks the
msg.sender allowance for the contract, but ERC20 transferFrom will
already fail due to insufficient allowance if applicable.

The function _updateRewardForEpoch() in FarmingRewards.sol calls
_lastTimeRewardApplicable three times and _rewardPerToken two times.

When calling the unlock() method, endDate is set again, despite it
being already set in lock().

Redundant code reduces readability and increases the Gas cost.

Paths:
./contracts/Treasure.sol: lock().
./contracts/FarmingRewards.sol: farm().
./contracts/Treasure.sol: unlock().

Recommendation: remove redundant code.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L05. Copy of Well-Known Contracts

Impact Low

www.hacken.io
17

https://swcregistry.io/docs/SWC-102


Likelihood Medium

Well-known contracts from projects like OpenZeppelin should be
imported directly from source as the projects are in development and
may update the contracts in future.

Path: ./contracts/CustomOwnable.sol

Recommendation: import the contract directly from source instead of
modifying it.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L06. Missing Check

Impact Medium

Likelihood Low

Users are unable to create locks with duration less than one year.
Trying to do so (e.g. creating a lock with 3 month duration) will
result in a new lock with one year of duration. This behavior is not
expected by the final user and can cause unexpected lock of funds for
more time than wanted.

Path:
./contracts/Treasure: lock().

Recommendation: consider reverting when users try to create locks
with durations less than one year or allow users to create locks with
less than one year.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L07. Accumulation of Dust Values

Impact Low

Likelihood Medium

The function farm() introduces a require check block.timestamp >=
startDate, which won’t allow any user to engage in farming until the
start time is reached.

Since users can not start deposits before the start time, it is
unlikely the FarmingRewards contract will distribute all rewards
balances to farmers.

Path:
./contracts/FarmingRewards: farm().

www.hacken.io
18



Recommendation: consider redesigning the require check so that users
can farm from the start time of the farming.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

L08. Redundant Code

Impact Low

Likelihood Medium

The function lock() introduces a require check _lockDuration ==
lockDurationModified, which is added due to redundant logic in the
function. The lockDurationModified variable is useless as
_lockDuration could be used directly.

Paths:
./contracts/Treasure: lock().

Recommendation: consider refactoring the function code in order to be
more assertive and straightforward, e.g by removing the
lockDurationModified variable and, instead, only checking if
_lockDuration >= ONE_YEAR.

Found in: 0be73ed

Status: Mitigated (With Customer notice: According to our business
logic WSD lock is a form of payment for deploying your farming pool.
Minimum WSD lock duration is 1 year, and if it’s over 1 year, then
WSD lock duration = farming epoch duration. We will make sure it will
readily be apparent throughout our documentation and farming
interface that you'll lock your WSD for a minimum of 1 year as a form
of payment for farming pool deployment.)

L09. Inefficient Gas Model

Impact Low

Likelihood Medium

In the FarmingRewards constructor, the variable rewardRate is
calculated as a function of the state variables rewardAmount and
epochDuration instead of _rewardAmount and _epochDuration, expending
more Gas than necessary.

In the same function, the emission of FarmingPoolInfo() follows the
same pattern of using state variables instead of _stardDate,
_endDate, _rewardAmount, _epochDuration and _minimumStakingExitTime.

Paths:
./contracts/Treasure: lock().

www.hacken.io
19



Recommendation: consider refactoring the function code in order to be
more assertive and straightforward, e.g by removing the
lockDurationModified variable and, instead, only checking if
_lockDuration >= ONE_YEAR.

Found in: 0be73ed

Status: Fixed (Revised commit: c0675f5)

L10. Wrong Check

Impact Medium

Likelihood Low

In the function lock(), the check farmingStart > 0 should be checking
epochDuration instead, since it seems to be a typo from the review
from the first version.

Paths:
./contracts/Treasure: lock().

Recommendation: review the code and check to make sure it is the
correct one.

Found in: 0be73ed

Status: Fixed (Revised commit: c0675f5)

L11. Copy of Well-Known Contracts

Impact Low

Likelihood Medium

Well-known contracts from projects like OpenZeppelin should be
imported directly from source as the projects are in development and
may update the contracts in future.

Path: ./contracts/FarmingRewardsFactory.sol: deployFarmingRewards()

Recommendation: it is recommended to use the OpenZeppelin library
create2 to deploy and get the address of a create2-generated
contract.

Found in: 0be73ed

Status: Fixed (Revised commit: dce4b97)

www.hacken.io
20

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Create2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Create2.sol


Informational

I01. Missing Events for Critical Value Updates

Events should be emitted after sensitive changes take place, to
facilitate tracking and notify off-chain clients following the
contract’s activity.

Paths:
./contracts/Treasure.sol: constructor() → FeeRecipientChanged.
./contracts/FarmingRewards.sol: _updateRewardsForEpoch().
./contracts/FarmingRewardsFactory.sol: constructor() →
LockAmountChanged, WSUnlockComission.

Recommendation: consider emitting events in said functions.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

I02. Missing Event Indexed Parameters

Some events are not using indexed parameters. If such events provide
relevant enough information to fetch, they should use the keyword
indexed in order to be properly searched and tracked off-chain.

Path:
./contracts/FarmingRewards.sol: FarmingPoolInfo() -> stakingToken,
rewardToken.

Recommendation: consider adding indexed parameters for events that
should be searchable.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

I03. Boolean Equality

Boolean values can be used directly and do not need to be compared to
true or false.

Paths:
./contracts/FarmingRewards.sol: initialize().

Recommendation: remove boolean equality.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

I04. Style Guide Violation: Order Of Layout

Inside each contract, library or interface, use the following order:
1. Type declarations
2. State variables

www.hacken.io
21



3. Events
4. Errors
5. Modifiers
6. Functions

a. constructor
b. initializer (if exists)
c. receive function (if exists)
d. fallback function (if exists)
e. external
f. public
g. internal
h. private

Paths:
./contracts/FarmingRewards.sol
./contracts/FarmingRewardsFactory.sol

Recommendation: change order of layout to fit Official Style Guide.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

I05. Misleading Error Message

In the contract FarmingRewards in the createEpoch function, when a
user inputs a start date that is less than current date, the contract
will throw an error which says “​​Provided start date too late” when
actually the start date is too early thus it is invalid.

Path:
./contracts/FarmingRewards.sol

Recommendation: fix the error message with the correct information.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

I06. Typo in Require Messages

In the contract FarmingRewardsFactory there is a typo present in four
of the require statements in the deploy function:

then -> than.

Path:
./contracts/FarmingRewardsFactory.sol

Recommendation: fix typos.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

www.hacken.io
22

https://docs.soliditylang.org/en/v0.8.20/style-guide.html#order-of-layout


I07. Variables That Can Be Set Immutable

Impact Low

Likelihood Low

Use immutable keywords on state variables to limit changes to their
state and save Gas.

Note that, by implementing changes in H01, rewardToken and
stakingToken can be declared immutable.

Path:

./contracts/Treasure.sol: wsd, farmingRewardFactory.

Recommendation: consider using the keyword immutable for said
variables.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

I08. Functions That Can Be External

Impact Medium

Likelihood Low

Public functions that are never called by the contract should be
declared external to save Gas.

Path:
./contracts/FarmingRewards.sol: lastTimeRewardApplicable(),
rewardPerToken().

Recommendation: remove redundant code.

Found in: bc97735

Status: Fixed (Revised commit: c0675f5)

I09. Variables That Can Be Set Constant

Impact Low

Likelihood Low

Use constant keywords on state variables that are set by default and
never change to save Gas.

Use CAP_WORDS to declare said variables.

Paths:

www.hacken.io
23



./contracts/FarmingRewardsFactory.sol: MAX_COMISSION,
minStakingExitTime, maxStakingExitTime, minEpochDuration.
./contracts/Treasure.sol: ONE_YEAR, MAX_COMISSION.

Recommendation: consider using the keyword constant for said
variables.

Found in: bc97735

Status: Fixed (Revised commit: 0be73ed)

www.hacken.io
24



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
25



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
26



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
27



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/john-whitebit/farming

Commit bc97735

Whitepaper -

Requirements Link

Technical
Requirements -

Contracts File: eth/contracts/CustomOwnable.sol
SHA3: c0da1caa2f57aa3288d6feba598a19c56e4d63ac011d34abf5bf42eeb0935754

File: eth/contracts/FarmingRewards.sol
SHA3: ec84cf0adf1f2045b7f9eca0b41f5b5bca336bea47b2d07a14351bdcdf8f6e6a

File: eth/contracts/FarmingRewardsFactory.sol
SHA3: 3c0ba245c90688194dd4fe5a6a279948ba433b0ca317e1a94bb07acfc12ea9a1

File: eth/contracts/Treasure.sol
SHA3: ba90cf6cf0ec8c9c7d5219510e5db2bcaf26915c87bca22f922b62a5794b7c66

File: eth/contracts/interfaces/IFarmingRewards.sol
SHA3: 305be4c62d32dfdbbfd497788a9e2b38204de54798a44780a3bfdf14568a9283

File: eth/contracts/interfaces/ITreasure.sol
SHA3: 9e4145318a062d5d367e825515ab9429c1ae0b67205a7cf6a18b7b1ca6436528

File: eth/contracts/interfaces/IWhiteSwapV2Factory.sol
SHA3: 68dcd5a4e1925da756c414a0e50d19809f23fe26d415bb432519deb5871f0b1d

Second review scope

Repository https://github.com/john-whitebit/farming

Commit 0be73ed

Whitepaper -

Requirements Link

Technical
Requirements -

Contracts File: eth/contracts/FarmingRewards.sol
SHA3: e1bce7cf13a12bc810b5d065d9ed5fce0984f6a12c4b3e2bd8a12946a3e60880

File: eth/contracts/FarmingRewardsFactory.sol
SHA3: d7c5fa5b774aea20eece5ed4848d321c80bb3a5d20d221e8af848df455f0fcca

www.hacken.io
28

https://github.com/john-whitebit/farming
https://drive.google.com/file/d/1iNXv3M_U_tsm1lPJRoQ4YT7OF5L66Ki6/
https://github.com/john-whitebit/farming
https://drive.google.com/file/d/1iNXv3M_U_tsm1lPJRoQ4YT7OF5L66Ki6/


File: eth/contracts/Treasure.sol
SHA3: b0acbc32027d6142d566f1694d2f649efb30a50b88b823d99a12a70140315d17

File: eth/contracts/interfaces/IFarmingRewards.sol
SHA3: 8b775148f78cf087d402678827d1011f3ecfc6a4b18c999c9eb1a39a8d1df2d1

File: eth/contracts/interfaces/ITreasure.sol
SHA3: aa64c2cb1f58fd27bd1c3a8aeaff83fae2034e98a7df8df2de7f41ce7fa49d04

File: eth/contracts/interfaces/IWhiteSwapV2Factory.sol
SHA3: 23897ee7a1daa19c4b183bf05163bf1b3ca19c0efcce90645fafc51312b2f34d

Third review scope

Repository https://github.com/john-whitebit/farming

Commit c0675f5

Whitepaper -

Requirements Link

Technical
Requirements -

Contracts File: eth/contracts/FarmingRewards.sol
SHA3: 506e990a6af03ac2006c2ee1ca3176dd9e0b42c279f5f9fedbe14a5764818cbd

File: eth/contracts/FarmingRewardsFactory.sol
SHA3: 56a59b1b6b5b12b1a8b33413edc5b2f82b2547e1065b7c041dc6f53428bd40b5

File: eth/contracts/Treasure.sol
SHA3: 61b2a54e63939a7b6c79a626b338e8a58b1978939808fe39e4abef5349ea478a

File: eth/contracts/interfaces/IFarmingRewards.sol
SHA3: 698c114ef45fb23259737a2ac3a164e45e7f6db815c969de94df507a57806da0

File: eth/contracts/interfaces/ITreasure.sol
SHA3: 9e1c3d1cc286de28895d9230053b3683b10ee5644e50dd83dad6f5b58770cce4

File: eth/contracts/interfaces/IWhiteSwapV2Factory.sol
SHA3: d608c7a2af02ac0603010eb560dfc9a2664367fe587c8a430cd4f4cd3a968632

Fourth review scope

Repository https://github.com/Whiteswap-exchange/farming-eth

Commit dce4b97

Whitepaper -

Requirements Link

Technical
Requirements -

www.hacken.io
29

https://github.com/john-whitebit/farming
https://drive.google.com/file/d/1iNXv3M_U_tsm1lPJRoQ4YT7OF5L66Ki6/
https://github.com/Whiteswap-exchange/farming-eth
https://drive.google.com/file/d/1iNXv3M_U_tsm1lPJRoQ4YT7OF5L66Ki6/


Contracts File: eth/contracts/FarmingRewards.sol
SHA3: 68d2e9950d9a57341bb3f69eb2b683cd3d0188a0fe5331cc398350d855832c13

File: eth/contracts/FarmingRewardsFactory.sol
SHA3: 866c115abef80b0c9245773a9ea595d5ddb15d8becd4d0d4a398d3bdea5c203f

File: eth/contracts/Treasure.sol
SHA3: 103002c0f50e43b20b2ad901ab343d2c85c54973bed5899cb8c5a7c156be8fcb

File: eth/contracts/interfaces/IFarmingRewards.sol
SHA3: 698c114ef45fb23259737a2ac3a164e45e7f6db815c969de94df507a57806da0

File: eth/contracts/interfaces/ITreasure.sol
SHA3: 9e1c3d1cc286de28895d9230053b3683b10ee5644e50dd83dad6f5b58770cce4

File: eth/contracts/interfaces/IWhiteSwapV2Factory.sol
SHA3: d608c7a2af02ac0603010eb560dfc9a2664367fe587c8a430cd4f4cd3a968632

www.hacken.io
30


