
Customer: CLABS
Date: July 29th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
CLABS

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU
Noah Jelich | Senior Solidity SC Auditor at Hacken OU

Type ERC20; Attestation; EsccountsPerIssuerrow

Platform EVM

Network Ethereum,

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website -

Timeline 13.06.2022 – 29.07.2022

Changelog 12.07.2022 – Initial Review
29.07.2022 - Second Review

www.hacken.io
2

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 17

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by CLABS (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/celo-org/celo-monorepo/tree/ASv2/packages/protocol
Commit:

d3322f46d877db11ee705f22e7fb103085d10301
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
https://docs.celo.org/celo-codebase/protocol/transactions/escrow
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139

842768ad9fe192cb46c00

Type: Technical description
https://github.com/celo-org/celo-monorepo/pull/9560
https://github.com/celo-org/celo-monorepo/pull/9631
https://github.com/celo-org/celo-monorepo/pull/9636

Type: Functional requirements
https://docs.celo.org/celo-codebase/protocol/transactions/escrow

Integration and Unit Tests: Yes
Deployed Contracts Addresses: -
Contracts:

File: ./packages/protocol/contracts/common/Initializable.sol
SHA3: ffac4ba806b1e411ad99b6757489672f8a1baa6c9c5fb84f40a310a5be5cacc3

File: ./packages/protocol/contracts/common/libraries/ReentrancyGuard.sol
SHA3: 4c4d2516e557392225dc4ecfab1e4fa1c41e39bd06d27bbdf7f777c4b04ac1ab

File: ./packages/protocol/contracts/common/Signatures.sol
SHA3: 1863f547bb7939b191f3078ea901ecb73531259fd98a51e93f71c3f2a4026a29

File: ./packages/protocol/contracts/common/UsingPrecompiles.sol
SHA3: 485abfc8a6e98e50198a805d875775fb018b49b76d23e30eaa94b97503061c6d

File: ./packages/protocol/contracts/common/UsingRegistryV2.sol
SHA3: a87d1b18dc4c975e18bb5c9e40491b16e67898444b34ce785df34bed28a029b8

File:
./packages/protocol/contracts/common/UsingRegistryV2BackwardsCompatible.sol

SHA3: 89749df81c2e34a606b6ba87e1ac48f415137517d73a7c9da7b6a8dcbd9381a0

File: ./packages/protocol/contracts/identity/Escrow.sol
SHA3: e970ed6cf2d00b4bbdeb954d281e508b52fee8dc1c99d2978787ab2904d89575

File: ./packages/protocol/contracts/identity/FederatedAttestations.sol
SHA3: 048773e19c15e288d6bd454f91126135dec48cde49b771a4dc5653d08f2218aa

www.hacken.io
4

https://github.com/celo-org/celo-monorepo/tree/ASv2/packages/protocol
https://docs.celo.org/celo-codebase/protocol/transactions/escrow
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139842768ad9fe192cb46c00
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139842768ad9fe192cb46c00
https://github.com/celo-org/celo-monorepo/pull/9560
https://github.com/celo-org/celo-monorepo/pull/9631
https://github.com/celo-org/celo-monorepo/pull/9636%3E
https://docs.celo.org/celo-codebase/protocol/transactions/escrow

Second review scope
Repository:

https://github.com/celo-org/celo-monorepo/tree/ASv2/packages/protocol
Commit:

c1bd057484c4601436eb35c563d431f80d5f94b6
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
https://docs.celo.org/celo-codebase/protocol/transactions/escrow
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139

842768ad9fe192cb46c00

Type: Technical description
https://github.com/celo-org/celo-monorepo/pull/9560
https://github.com/celo-org/celo-monorepo/pull/9631
https://github.com/celo-org/celo-monorepo/pull/9636

Type: Functional requirements
https://docs.celo.org/celo-codebase/protocol/transactions/escrow

Integration and Unit Tests: Yes
Deployed Contracts Addresses: -
Contracts:

File: ./packages/protocol/contracts/common/Initializable.sol
SHA3: ffac4ba806b1e411ad99b6757489672f8a1baa6c9c5fb84f40a310a5be5cacc3

File: ./packages/protocol/contracts/common/libraries/ReentrancyGuard.sol
SHA3: 4c4d2516e557392225dc4ecfab1e4fa1c41e39bd06d27bbdf7f777c4b04ac1ab

File: ./packages/protocol/contracts/common/Signatures.sol
SHA3: 1863f547bb7939b191f3078ea901ecb73531259fd98a51e93f71c3f2a4026a29

File: ./packages/protocol/contracts/common/UsingPrecompiles.sol
SHA3: 485abfc8a6e98e50198a805d875775fb018b49b76d23e30eaa94b97503061c6d

File: ./packages/protocol/contracts/common/UsingRegistryV2.sol
SHA3: 89749df81c2e34a606b6ba87e1ac48f415137517d73a7c9da7b6a8dcbd9381a0

File:
./packages/protocol/contracts/common/UsingRegistryV2BackwardsCompatible.sol

SHA3: 89749df81c2e34a606b6ba87e1ac48f415137517d73a7c9da7b6a8dcbd9381a0

File: ./packages/protocol/contracts/identity/Escrow.sol
SHA3: 8884142aba73416fa44e8b53b3de56abfc6212b89c6d6633b25981f3e6e6cf3e

File: ./packages/protocol/contracts/identity/FederatedAttestations.sol
SHA3: 7241eca1d0de17a2a512c051c80fec5bb2322d4a65eb2bd609a343b09ca1e40c

www.hacken.io
5

https://github.com/celo-org/celo-monorepo/tree/ASv2/packages/protocol
https://docs.celo.org/celo-codebase/protocol/transactions/escrow
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139842768ad9fe192cb46c00
https://clabsco.notion.site/Federated-Attestation-Protocol-ASv2-05dc4843139842768ad9fe192cb46c00
https://github.com/celo-org/celo-monorepo/pull/9560
https://github.com/celo-org/celo-monorepo/pull/9631
https://github.com/celo-org/celo-monorepo/pull/9636%3E
https://docs.celo.org/celo-codebase/protocol/transactions/escrow

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Technical and
functional documents are provided.

Code quality
The total CodeQuality score is 8 out of 10. The code mostly follows
official guidelines but uses an outdated version. The tests were provided,
and they are executing without a problem.

Architecture quality
The architecture quality score is 7 out of 10. The project has clear, clean
architecture. The development environment is not well configured.

Security score
As a result of the audit, the code contains 1 medium and 4 low severity
issues. The security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.8.

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Failed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Not Relevant

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Failed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Not Relevant

Authorization SWC-115 tx.origin should not be used for Not Relevant

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Failed

www.hacken.io
9

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

A federated attestation protocol(v2 in scope) leverages a federated set of
independent issuers to perform phone number attestations. It has an escrow
functionality that allows users to send payments to other users.

● FederatedAttestations — its main purpose is to map attestations to
accounts. It allows users to register or revoke attestations.

● Escrow — allows users to send payments to other users. These payments
can be withdrawn by the receiver, or they will expire.

● Initializable — a contract that implements the check if a contract is
already deployed.

● Signatures — a library that handles signature operations.
● UsingPrecompiles — a helper contract that mainly handles block and

header-related data.
● ReentrancyGuard — a library that helps contracts guard against

reentrancy attacks.
● UsinRegistryV2 — registry contract.
● UsinRegistryV2BackwardsCompatible - contains a different

implementation of the getVersion contract.

Privileged roles
● Owner: The owner of the Escrow contract:

■ can add a new default trustedIssuers
■ can remove an existing default trustedIssuers

Risks
● ERC20 tokens being used in the competitions should adopt standard

ERC20 implementations. Any implementation with a fallback logic can
lead to unexpected behavior during token transfers, such as reverts.
This can lead to potential Denial-of-Service vulnerabilities.

● The repository contains contracts that are out of the audit scope.
The secureness of such contracts could not be guaranteed.

www.hacken.io
11

Findings

Critical

No critical issues were found.

High

1. Users can withdraw payments after expiry

The system allows payments to be withdrawn after their expiry
duration has passed.

This will allow users to withdraw expired payment records.

File: ./contracts/identity/Escrow.sol

Contract: Escrow

Function: withdraw

Recommendation: This feature is not documented correctly. The
documentation should be updated.

Status: Fixed.Link

Medium

1. Out-of-Gas possibility

Iterating over large structures (user-supplied or not) and performing
external calls in loops may lead to out-of-Gas exceptions.
FederatedAttestations contract iterates over user-supplied arrays.

This can lead to out-of-Gas exceptions.

File: ./contracts/identity/FederatedAttestaions.sol

Contract:FederatedAttestations

Functions: batchRevokeAttestations

Recommendation: Implement array size limitations.

Status: Reported. (Related Customer Answer)

2. Unfinished code

The provided code should be implemented in the full logic of the
project. Since any missing parts, TODOs, or drafts can change in
time, the robustness of the audit cannot be guaranteed.

File: ./contracts/identity/FederatedAttestaions.sol

Contract: FederatedAttestations

Functions: registerAttestationAsIssuer, registerAttestation

www.hacken.io
12

https://docs.celo.org/celo-codebase/protocol/transactions/escrow
https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing

Recommendation: Complete the code to meet all the requirements and
delete the TODO comments.

Status: Fixed (c1bd057484c4601436eb35c563d431f80d5f94b6)

3. Required SafeERC20 implementation

Tokens in the ERC20 standard, return a boolean due to the transfer
method, but it is important to use the SafeERC20 library to support
tokens that do not conform to the ERC20 standard and do not return
booleans.

This issue makes it impossible to support tokens that do not conform
with the ERC20 standard.

File: ./contracts/identity/Escrow.sol

Contract: Escrow

Function: transfer

Recommendation: Implement SafeERC20 library.

Status: Fixed (c1bd057484c4601436eb35c563d431f80d5f94b6)

Low

1. Outdated Solidity version

Using an outdated compiler version can be problematic, especially if
publicly disclosed bugs and issues affect the current compiler
version. The project uses compiler version 0.5.13.

Files: ./contracts/common/UsingRegistryV2.sol

./contracts/common/Signatures.sol

./contracts/common/ReentrancyGuard.sol

./contracts/common/Initialize.sol

./contracts/common/UsingPrecompiles.sol

./contracts/common/UsingRegistryV2BackwardsCompatible.sol

./contracts/identity/FederatedAttestaions.sol

./contracts/identity/Escrow.sol

Contracts: UsingRegistryV2, Signatures, Initialize, UsingPrecompiles,
UsingRegistryV2BackwardsCompatible, Federated Attestations, Escrow

Function: -

Recommendation: Use a contemporary compiler version.

Status: Reported. The development environment can be configured to
work with multiple compiler versions. (Related Customer Answer)

2. Floating pragma
www.hacken.io

13

https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing

Unlocked pragmas may cause the contract to be deployed with a
different Solidity version from the tested. The project uses floating
pragmas ^0.5.13.

This can lead to encountering undiscovered bugs.

Files: ./contracts/common/UsingRegistryV2.sol

./contracts/common/Signatures.sol

./contracts/common/ReentrancyGuard.sol

./contracts/common/Initialize.sol

./contracts/common/UsingPrecompiles.sol

./contracts/common/UsingRegistryV2BackwardsCompatible.sol

./contracts/identity/FederatedAttestaions.sol

./contracts/identity/Escrow.sol

Contracts: UsingRegistryV2, Signatures, ReentrancyGuard, Initialize,
UsingPrecompiles, UsingRegistryV2BackwardsCompatible,
FederatedAttestaions, Escrow

Function: -

Recommendation: Lock pragma to a specific compiler version.

Status: Reported. (Related Customer Answer)

3. Usage of state variables default visibility

Labeling the visibility explicitly makes it easier to catch incorrect
assumptions about who can access the variable.

Files: ./contracts/common/UsingPrecompiles.sol

Paths: TRANSFER, FRACTION_MUL, PROOF_OF_POSSESSION, GET_VALIDATOR,
NUMBER_VALIDATORS, EPOCH_SIZE, BLOCK_NUMBER_FROM_HEADER, HASH_HEADER,
GET_PARENT_SEAL_BITMAP and GET_VERIFIED_SEAL_BITMAP

Contracts: UsingPrecompiles

Recommendation: Explicitly define visibility for all state variables.

Status: Reported. (Related Customer Answer)

4. Unused variables

There are variables in UsingPrecompiles and UsingRegistryV2 contracts
that are defined but never used.

Files: ./contracts/common/UsingRegistryV2.sol

./contracts/common/UsingPrecompiles.sol

Contracts: UsingRegistryV2, UsingPrecompiles

www.hacken.io
14

https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing
https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing

Paths: TRANSFER, DOWNTIME_SLASHER_REGISTRY_ID,
DOUBLE_SIGNING_SLASHER_REGISTRY_ID, GOVERNANCE_SLASHER_REGISTRY_ID

Recommendation: Remove unused variables.

Status: Mitigated. UsingRegistryV2 is useful for other contracts that
want to interact with contracts in the registry, and it would be
helpful to access those constants to find the proper addresses for
DowntimeSlasher. (Related Customer Answer)

5. Functions that could be declared external

minQuorumSizeInCurrentSet, minQuorumSize,
getVerifiedSealBitmapFromHeader, getParentSealBitmap, hashHeader,
getBlockNumberFromHeader, checkProofOfPossession,
numberValidatorsInCurrentSet, validatorSignerAddressFromSet,
validatorSignerAddressFromCurrentSet, getEpochNumber and
fractionMulExp functions of UsingPrecompiles and getSignerOfAddress
and getSignerOfTypedDataHash functions of signatures can be declared
external.

Files: ./contracts/common/UsingPrecompiles.sol

./contracts/common/Signatures.sol

Contracts: UsingPrecompiles, Signatures

Functions: minQuorumSizeInCurrentSet, minQuorumSize,
getVerifiedSealBitmapFromHeader, getParentSealBitmap, hashHeader,
getBlockNumberFromHeader, checkProofOfPossession,
numberValidatorsInCurrentSet, validatorSignerAddressFromSet,
validatorSignerAddressFromCurrentSet, getEpochNumber, fractionMulExp,
getSignerOfAddress, getSignerOfTypedDataHash

Recommendation: Convert to external. Making functions external
instead of public reduces Gas costs during execution.

Status: Reported. (Related Customer Answer)

www.hacken.io
15

https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing
https://drive.google.com/file/d/1PxcSgau96StJZ69OQ4a5WlyHZZ6FG9SB/view?usp=sharing

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
16

