
Customer: Oracula
Date: February 11th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Oracula.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Transfer controller
Platform EVM
Language Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository No
Deployed
contract

Contract Address 0x85f3ec4EC49aB6a5901278176235957ef521970d |
BscScan

Technical
Documentation

No

JS tests No
Website https://oracula.io/pitchdeck.pdf
Timeline 03 FEB 2022 – 05 FEB 2022
Changelog 03 FEB 2022 – INITIAL AUDIT

www.hacken.io

https://bscscan.com/address/0x85f3ec4EC49aB6a5901278176235957ef521970d
https://bscscan.com/address/0x85f3ec4EC49aB6a5901278176235957ef521970d
https://oracula.io/pitchdeck.pdf

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 8

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Oracula (Client) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between Feb 03rd, 2022 - Feb 05th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

Contract Address 0x85f3ec4EC49aB6a5901278176235957ef521970d | BscScan
Commit:

-
Technical Documentation: No
JS tests: No
Contracts:

oracula.sol
We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

https://bscscan.com/address/0x85f3ec4EC49aB6a5901278176235957ef521970d
https://bscscan.com/address/0x85f3ec4EC49aB6a5901278176235957ef521970d

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythx and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are
presented in the Audit overview section. All found issues can be found in
the Audit overview section.

As a result of the audit, security engineers found 1 high, 6 low severity
issues.

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to asset loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to asset loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues detected.

High

1. Transfer Receives Fees.

In the _transfer() function fees are deducted from the amount. This
causes the receiver to get less than desired amount every time. Also
it is impossible to predict fees.

Contracts:Oracula.sol

Functions: _transfer(address _from, address _to, uint256 _amount)

Recommendation: Transfer and transferFrom should not take a fee.

Medium

No medium issues detected.

Low

2. Variable Shadowing.

The owner variable used in the allowance function shadows the Ownable
contract’s owner function.

Contracts:Oracula.sol

Functions: owner(), approve(address owner, address spender, uint256
amount), allowance(address owner, address spender)

3. Boolean Equality.

Boolean constants can be used directly and do not need to be compared
to true or false

Contracts:Oracula.sol

Functions: _setExcanhePairs(address pair, bool value)

Recommendation: Avoid using boolean equalities.

www.hacken.io

Status:

4. State Variable Visibility not Set (SWC-108).

The visibility for state variables, burnFee, devFee, rewardFee,
maxBurnFee, maxDevFee, maxRewardFee, maximumFee, denominator,
burnAddress, devAddress, rewardAddress are not set.

Contracts:Oracula.sol

Functions: -

Recommendation: Variables can be specified as being public, internal
or private. Explicitly define visibility for all state variables.

5. State Variables that could be Declared as constant

State variables that don't change their (_decimals, _name, _symbol,
_totalSupply, denominator) value should be declared constant to save
gas.

Contracts:Oracula.sol

Functions: -

Recommendation:Declare above mentioned variables as constants.

Status:

6. Functions that can be Declared as external

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Contracts: Oracula.sol

Functions: renounceOwnership(), transferOwnership(address newOwner),
increaseAllowance(address spender, uint256 addedValue),
decreaseAllowance(address spender, uint256 subtractedValue),
approve(address owner, address spender, uint256 amount),
allowance(address owner, address spender), transferFrom(address
sender, address recipient, uint256 amount)

Recommendation: Aforementioned should be declared as external.

Status:

www.hacken.io

https://swcregistry.io/docs/SWC-108

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 high, 6 low severity
issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

