

Customer: xDAO
Date: September 3rd, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
xDAO.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; DAO; DAO Factory; Shop; DAO Viewer
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/xDAO-App/xdao-contracts
Commit 8FEABCFCBF4F03F666448F5500F54E3DAAD3E42E
Technical
Documentation

YES

JS tests YES
Timeline 30 AUGUST 2021 – 03 SEPTEMBER 2021
Changelog 03 SEPTEMBER 2021 – INITIAL AUDIT

03 SEPTEMBER 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by xDAO (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of the Customer's smart contract and its code
review conducted between August 30th, 2021 - September 3rd, 2021. The second
code review conducted on September 3rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/xDAO-App/xdao-contracts
Commit:
 8feabcfcbf4f03f666448f5500f54e3daad3e42e
Technical Documentation: Yes/No?
JS tests: Yes/No?
Contracts:

core/Dao.sol
core/Factory.sol
core/LP.sol
core/Shop.sol
core/XDAO.sol
interfaces/IAdapter.sol
interfaces/IDao.sol
interfaces/IFactory.sol
interfaces/ILP.sol
viewers/DaoViewer.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence

▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

www.hacken.io

▪ Repository Consistency

▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 medium and 8 low severity
issues.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

After the second review security engineers found 1 medium and 1 low severity
issue, which were commented by the customer.

Notice:

1. Quorum, MonthlyCost and FreeTrial values are changed with no events
emitting;

2. Minting amount of XDAO tokens is 1 billion.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

Unused return of a function

The return value of an external call is not stored in a local or state
variable. So if the called function will not revert but return false,
your execute/executePermitted functions will still return true and
store the execution.

Recommendation: Please check the return value of called functions.

Customer’s comment: It is normal for us not to store the return value.

Because we use the Address library from openzeppelin and completely
delegate all checks to them.

 Low

1. Implicit visibility declaration

When visibility is not explicitly declared it is assumed to be
internal. But it could be unclear to reviewers.

Recommendation: Please add an explicit visibility declaration.

Fixed before the second review.

2. Excess conditions checking

It is excess to check uint256 value to be zero or less than the current
block timestamp because the current block timestamp will always be
greater than zero.

Recommendation: Please remove the excess condition check

Fixed before the second review.

3. Excess require statement

It is excess to assert if AddressSet doesn’t contain a value and then
adding it because this check is already done in the add function, which
will just return false if a value is already in there.

Recommendation: Please remove the excess require statement.

Fixed before the second review.

4. Excess require statement

www.hacken.io

It is excess to assert if AddressSet contains a value
and then removing it because this check is already
done in the remove function, which will just return false if a value
is not there.

Recommendation: Please remove the excess require statement.

Fixed before the second review.

5. Unindexed event parameters

The event DAO.Received doesn’t have an indexed field in it. Indexing
fields will add the ability to search and better organize logs later.

Recommendation: Please add indexed keyword to the address field of the
event.

Fixed before the second review.

6. Multiple readings for the state variable

It is more gas sufficient to read the state variable only once and
store it to the local variable. Then use the local variable when it’s
needed in the function.

Recommendation: Please use local variables.

Fixed before the second review.

7. Too many digits

Literals with many digits are difficult to read and review.

Recommendation: Please use scientific notation and ether units (ie.
1e9 ether).

Lines: XDAO.sol#16
_mint(msg.sender, 1000000000 * 10**decimals());

Customer’s comment: It is normal for us to use this notation. We prefer
to keep it.

8. Missing events

Changing critical values should be followed by the event emitting to
better tracking off-chain.

Recommendation: Please emit events on changing critical values.

Lines: Dao.sol#488-494
function changeQuorum(uint8 _q) external onlyDao returns (bool) {
 require(_q >= 1 && _q <= 100, "DAO: quorum should be 1 <= q <= 100");

 quorum = _q;

 return true;
}

Lines: Factory.sol#46-50

www.hacken.io

function changeMonthlyCost(uint256 _m) external onlyOwner returns (bool)
{
 monthlyCost = _m;

 return true;
}

Lines: Factory.sol#52-60
function changeFreeTrial(uint256 _freeTrial)
 external
 onlyOwner
 returns (bool)
{
 freeTrial = _freeTrial;

 return true;
}

Customer’s comment: It’s normal for us to not use Events here.We prefer
to keep it without Events.

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 medium and 8 low severity
issues.

After the second review security engineers found 2 low severity issues, which
were commented by the customer.

Notice:

1. Quorum, MonthlyCost and FreeTrial values are changed with no events
emitting;

2. Minting amount of XDAO tokens is 1 billion.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

