
Customer: G21 CAPITAL MARKETING
Date: October 12th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for G21
CAPITAL MARKETING

Approved By Noah Jelich | Senior Solidity SC Auditor at Hacken OU

Type ERC20 token; Lending

Platform EVM

Network Ethereum, GTON Network

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website -

Timeline 11.08.2022 – 12.10.2022

Changelog 26.08.2022 – Initial Review
12.10.2022 – Second Review

www.hacken.io
2

Table of contents
Introduction 4

Scope 4

Severity Definitions 7

Executive Summary 8

Checked Items 9

System Overview 12

Findings 17

Disclaimers 22

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by G21 Capital Marketing (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/GTON-capital/gcd-protocol
https://github.com/GTON-capital/gcd-oracles

Commit:
4846d084bd8ab53b97abfe65f92436ffafc828f3
d65e130acb0a62838d3795e924ecd0294cf79b8e

Documentation: No

Integration and Unit Tests: Yes
Deployed Contracts Addresses: No
Contracts:

File: ./contracts/auction/LiquidationAuction02.sol
SHA3: 5c0399e60ca885dcd795f36e1f7206a27367464e7170fcd88b7f3e9d300d0fc2

File: ./contracts/CDPRegistry.sol
SHA3: 5305efd5dc5e040f4f46654aa9355d7f69c4610d8608e920866befc7f2cefbfc

File: ./contracts/CollateralRegistry.sol
SHA3: 46985040c3689251ae2015dbf40a8f9537b671ec6320f855aef6f29eb90395e6

File: ./contracts/GCD.sol
SHA3: 5974f1626f277d77571a60240aa5ca2754455e436053c316b9f2f12950945ac0

File: ./contracts/helpers/ReentrancyGuard.sol
SHA3: afad31fbaa9f204dac95f8786bc52dfd2635dd4d663f70045308a0ea31e9c778

File: ./contracts/helpers/TransferHelper.sol
SHA3: 2a73e10319d9f00d57f962f863a396ed5331406b169db52ded231041091c618e

File: ./contracts/interfaces/IAggregator.sol
SHA3: 3c6cdb1afee1019b6b23ee5ebb84f33c5202ba1ccac8b3586fb808cdc3c0c0a0

File: ./contracts/interfaces/ICDPRegistry.sol
SHA3: 9620b8d235994a831d812ad6aa73b18604cb8113d1c381bcce2605b9cda82899

File: ./contracts/interfaces/IForceTransferAssetStore.sol
SHA3: b08b7dfe6dc40b4e5f33f37d25f18600c24c0e51cfca6789b57da1de054adde4

File: ./contracts/interfaces/IFoundation.sol
SHA3: 7003220bf96fef2265d63e9d3cf0044a040a4c158b396f91150d9d759d27a9b5

File: ./contracts/interfaces/IOracleEth.sol
SHA3: 8100397696a654cbef3fed2771152b6acfc1cab6e0b38834b435403f3927d2f4

www.hacken.io
4

https://github.com/GTON-capital/gcd-protocol
https://github.com/GTON-capital/gcd-oracles

File: ./contracts/interfaces/IOracleRegistry.sol
SHA3: 1a0a7d74cf0e0601776ae963ac5518585281176c41c9167c035d6702d63b9097

File: ./contracts/interfaces/IOracleUsd.sol
SHA3: af1f1e78dbf1e020a4e27af49ceffccdec279d06f981ef6a5e8e4dd06bbcd182

File: ./contracts/interfaces/IToken.sol
SHA3: 806df0506701e04983a16f4edd6752399d1beb44a08f44e92f962fb160101ccb

File: ./contracts/interfaces/IVault.sol
SHA3: 13c1cef89dba047350e1eb0875711cbeea841e3ef91af4e7fb035c358a373966

File: ./contracts/interfaces/IVaultManagerParameters.sol
SHA3: 055b4db613c79c64b47930ab37cd4d682326c310fe45c17603b6b38995df19ff

File: ./contracts/interfaces/IVaultParameters.sol
SHA3: d5fbf3f08afd317ed8573d2392109de6345a8427e20c9564ca0df8ae9d945449

File: ./contracts/interfaces/IWETH.sol
SHA3: 3865222c4ff2eb8d605178339d19987a93cbf6abee6e830d68971fadf5531ef2

File: ./contracts/interfaces/IWrappedToUnderlyingOracle.sol
SHA3: 0df9f79c7313872a44156dc98bb30276a434285f34c29a1f53f825c26310781c

File: ./contracts/oracles/ChainlinkedOracleMainAsset.sol
SHA3: b68074cb85c192fd7aa8a2544fcd2f7b83b2a89c12c242d7b68be30386059f62

File: ./contracts/oracles/OracleRegistry.sol
SHA3: eb9d36df96f86b61b45a4ab51307a22d36c7dfcca295bb0a8cbf8e41471ff9fb

File: ./contracts/oracles/WrappedToUnderlyingOracle.sol
SHA3: 9a3494d258407efda85760d2308dec5954ff4d8f7f99d6b3ca8eb54b474d694b

File: ./contracts/test-helpers/WETH.sol
SHA3: d7ee14a4ab65418637e0d193606ee6b3035936ae9394c468c850f345089dd151

File: ./contracts/vault-managers/CDPManager01.sol
SHA3: efafa6da2164080489390dd100eef22a245abba5b728a27acd2bcff40de14a21

File: ./contracts/vault-managers/VaultManagerParameters.sol
SHA3: c645494a7adaa5d1e7328585e759bba5661cdadaf9f486e8240759383ff88efc

File: ./contracts/Vault.sol
SHA3: 0decbbf022e7776aafe5631892c403a4fe1f82a67e15c6f1b12fcb0274ad2dca

File: ./contracts/VaultParameters.sol
SHA3: d75accd4e9a4b292b9611ea7d4191a108c1ecbf27c17b5bd17553820068d61a1

File: ./contracts/helpers/IOracleRegistry.sol
SHA3: 1b265fad79101bb00d26133c7d8afc443da32b3624d3f7cdf0c78e208fba548d

File: ./contracts/helpers/IOracleUsd.sol
SHA3: 56c2b50696fca1128a2c4a5d7134d4eef0d82be665cb56f4a00d1e2b395f25d5

File: ./contracts/helpers/IVaultParameters.sol
SHA3: bb42fc6d89fd9e96c5187c275fea71bd835f47b38999aab76b82c9b7d7815a27

File: ./contracts/helpers/SafeMath.sol
SHA3: 932f79fc33490368f135c12b46329ac9a13ccd41163b9db5f1f244a66198c93e

www.hacken.io
5

File: ./contracts/impl/UniswapV3Oracle.sol
SHA3: 9beb6e4d633eb1e0749a20c89ae789a1439d8fcec791314d70c6615d270ad214

File: ./contracts/impl/uniswapV3Oracle/FullMath.sol
SHA3: 7857529e876071e3026c9383b78d5e2d8ce45f832b52c80ea88609457047d2d7

File: ./contracts/impl/uniswapV3Oracle/IUniswapV3Pool.sol
SHA3: f1225a22d827df6ac0de27bf8f7f30dfd32c01c22b62b110345362237c1d3e2e

File: ./contracts/impl/uniswapV3Oracle/IUniswapV3PoolDerivedState.sol
SHA3: 0bc5b04159a7fb067d8827545a982adf1a7da9b732624cfabb496615c9f993a2

File: ./contracts/impl/uniswapV3Oracle/LowGasSafeMath.sol
SHA3: 8efb50f75409d86b20ec10664f200a19149b640ae319b18970c9777fa635ed26

File: ./contracts/impl/uniswapV3Oracle/OracleLibrary.sol
SHA3: 2d1296083f65da13e2c98c1ff88b5e63f93967dc1221404736d709acc82b7aab

File: ./contracts/impl/uniswapV3Oracle/PoolAddress.sol
SHA3: efc47967301e46c120a2c4425212fa6d66d27a7e9203febf3d463fec81f39001

File: ./contracts/impl/uniswapV3Oracle/TickMath.sol
SHA3: c35e2b25d8315f9d943119b58cd5061afb54f8633cc28b46b827b81f84d2f4de

File: ./contracts/interface/IOracleRegistry.sol
SHA3: 18c6f9c801d65b9b1c72115b8d574969be12abef1677220d809120be370f73b1

File: ./contracts/interface/IOracleUsd.sol
SHA3: 3cd52c8f5fa39215243dce639a33c5d9d6448fa5081be591e29c9267453828ec

File: ./contracts/interface/IVaultParameters.sol
SHA3: 8c6e6adb471086132c1743756384f763291dfc5828ff779693881373bafbbfb0

Second review scope
Repository:

https://github.com/GTON-capital/gcd-protocol
https://github.com/GTON-capital/gcd-oracles

Commit:
4846d084bd8ab53b97abfe65f92436ffafc828f3
d65e130acb0a62838d3795e924ecd0294cf79b8e

Documentation:
Technical Description: Link

Integration and Unit Tests: Yes
Deployed Contracts Addresses: No
Contracts:

File: ./contracts/auction/LiquidationAuction02.sol
SHA3: 5c0399e60ca885dcd795f36e1f7206a27367464e7170fcd88b7f3e9d300d0fc2

File: ./contracts/CDPRegistry.sol
SHA3: 5305efd5dc5e040f4f46654aa9355d7f69c4610d8608e920866befc7f2cefbfc

File: ./contracts/CollateralRegistry.sol
SHA3: 46985040c3689251ae2015dbf40a8f9537b671ec6320f855aef6f29eb90395e6

File: ./contracts/GCD.sol
SHA3: 5974f1626f277d77571a60240aa5ca2754455e436053c316b9f2f12950945ac0

www.hacken.io
6

https://github.com/GTON-capital/gcd-protocol
https://github.com/GTON-capital/gcd-oracles
https://docs.gton.capital/learn/gton-dollar-gcd/gcd-contracts/solidity-api

File: ./contracts/helpers/ReentrancyGuard.sol
SHA3: afad31fbaa9f204dac95f8786bc52dfd2635dd4d663f70045308a0ea31e9c778

File: ./contracts/helpers/TransferHelper.sol
SHA3: 2a73e10319d9f00d57f962f863a396ed5331406b169db52ded231041091c618e

File: ./contracts/interfaces/IAggregator.sol
SHA3: 3c6cdb1afee1019b6b23ee5ebb84f33c5202ba1ccac8b3586fb808cdc3c0c0a0

File: ./contracts/interfaces/ICDPRegistry.sol
SHA3: 9620b8d235994a831d812ad6aa73b18604cb8113d1c381bcce2605b9cda82899

File: ./contracts/interfaces/IForceTransferAssetStore.sol
SHA3: b08b7dfe6dc40b4e5f33f37d25f18600c24c0e51cfca6789b57da1de054adde4

File: ./contracts/interfaces/IFoundation.sol
SHA3: 7003220bf96fef2265d63e9d3cf0044a040a4c158b396f91150d9d759d27a9b5

File: ./contracts/interfaces/IOracleEth.sol
SHA3: 8100397696a654cbef3fed2771152b6acfc1cab6e0b38834b435403f3927d2f4

File: ./contracts/interfaces/IOracleRegistry.sol
SHA3: 1a0a7d74cf0e0601776ae963ac5518585281176c41c9167c035d6702d63b9097

File: ./contracts/interfaces/IOracleUsd.sol
SHA3: af1f1e78dbf1e020a4e27af49ceffccdec279d06f981ef6a5e8e4dd06bbcd182

File: ./contracts/interfaces/IToken.sol
SHA3: 806df0506701e04983a16f4edd6752399d1beb44a08f44e92f962fb160101ccb

File: ./contracts/interfaces/IVault.sol
SHA3: 13c1cef89dba047350e1eb0875711cbeea841e3ef91af4e7fb035c358a373966

File: ./contracts/interfaces/IVaultManagerParameters.sol
SHA3: 055b4db613c79c64b47930ab37cd4d682326c310fe45c17603b6b38995df19ff

File: ./contracts/interfaces/IVaultParameters.sol
SHA3: d5fbf3f08afd317ed8573d2392109de6345a8427e20c9564ca0df8ae9d945449

File: ./contracts/interfaces/IWETH.sol
SHA3: 3865222c4ff2eb8d605178339d19987a93cbf6abee6e830d68971fadf5531ef2

File: ./contracts/interfaces/IWrappedToUnderlyingOracle.sol
SHA3: 0df9f79c7313872a44156dc98bb30276a434285f34c29a1f53f825c26310781c

File: ./contracts/oracles/ChainlinkedOracleMainAsset.sol
SHA3: b68074cb85c192fd7aa8a2544fcd2f7b83b2a89c12c242d7b68be30386059f62

File: ./contracts/oracles/OracleRegistry.sol
SHA3: eb9d36df96f86b61b45a4ab51307a22d36c7dfcca295bb0a8cbf8e41471ff9fb

File: ./contracts/oracles/WrappedToUnderlyingOracle.sol
SHA3: 9a3494d258407efda85760d2308dec5954ff4d8f7f99d6b3ca8eb54b474d694b

File: ./contracts/test-helpers/WETH.sol
SHA3: d7ee14a4ab65418637e0d193606ee6b3035936ae9394c468c850f345089dd151

File: ./contracts/vault-managers/CDPManager01.sol
SHA3: efafa6da2164080489390dd100eef22a245abba5b728a27acd2bcff40de14a21

www.hacken.io
7

File: ./contracts/vault-managers/VaultManagerParameters.sol
SHA3: c645494a7adaa5d1e7328585e759bba5661cdadaf9f486e8240759383ff88efc

File: ./contracts/Vault.sol
SHA3: 0decbbf022e7776aafe5631892c403a4fe1f82a67e15c6f1b12fcb0274ad2dca

File: ./contracts/VaultParameters.sol
SHA3: d75accd4e9a4b292b9611ea7d4191a108c1ecbf27c17b5bd17553820068d61a1

File: ./contracts/helpers/IOracleRegistry.sol
SHA3: 1b265fad79101bb00d26133c7d8afc443da32b3624d3f7cdf0c78e208fba548d

File: ./contracts/helpers/IOracleUsd.sol
SHA3: 56c2b50696fca1128a2c4a5d7134d4eef0d82be665cb56f4a00d1e2b395f25d5

File: ./contracts/helpers/IVaultParameters.sol
SHA3: bb42fc6d89fd9e96c5187c275fea71bd835f47b38999aab76b82c9b7d7815a27

File: ./contracts/helpers/SafeMath.sol
SHA3: 932f79fc33490368f135c12b46329ac9a13ccd41163b9db5f1f244a66198c93e

File: ./contracts/impl/UniswapV3Oracle.sol
SHA3: 9beb6e4d633eb1e0749a20c89ae789a1439d8fcec791314d70c6615d270ad214

File: ./contracts/impl/uniswapV3Oracle/FullMath.sol
SHA3: 7857529e876071e3026c9383b78d5e2d8ce45f832b52c80ea88609457047d2d7

File: ./contracts/impl/uniswapV3Oracle/IUniswapV3Pool.sol
SHA3: f1225a22d827df6ac0de27bf8f7f30dfd32c01c22b62b110345362237c1d3e2e

File: ./contracts/impl/uniswapV3Oracle/IUniswapV3PoolDerivedState.sol
SHA3: 0bc5b04159a7fb067d8827545a982adf1a7da9b732624cfabb496615c9f993a2

File: ./contracts/impl/uniswapV3Oracle/LowGasSafeMath.sol
SHA3: 8efb50f75409d86b20ec10664f200a19149b640ae319b18970c9777fa635ed26

File: ./contracts/impl/uniswapV3Oracle/OracleLibrary.sol
SHA3: 2d1296083f65da13e2c98c1ff88b5e63f93967dc1221404736d709acc82b7aab

File: ./contracts/impl/uniswapV3Oracle/PoolAddress.sol
SHA3: efc47967301e46c120a2c4425212fa6d66d27a7e9203febf3d463fec81f39001

File: ./contracts/impl/uniswapV3Oracle/TickMath.sol
SHA3: c35e2b25d8315f9d943119b58cd5061afb54f8633cc28b46b827b81f84d2f4de

File: ./contracts/interface/IOracleRegistry.sol
SHA3: 18c6f9c801d65b9b1c72115b8d574969be12abef1677220d809120be370f73b1

File: ./contracts/interface/IOracleUsd.sol
SHA3: 3cd52c8f5fa39215243dce639a33c5d9d6448fa5081be591e29c9267453828ec

File: ./contracts/interface/IVaultParameters.sol
SHA3: 8c6e6adb471086132c1743756384f763291dfc5828ff779693881373bafbbfb0

www.hacken.io
8

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
9

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10. Functional
requirements were provided as comment lines in the code and were partially
missed. The Customer provided a public technical description.

Code quality
The total CodeQuality score is 2 out of 10. Several commented code parts
were found. A redundant declaration was detected. Most of the code follows
the style guide. Some compilation issues were found. Deployment and basic
user interactions were partly covered with tests, but some tests were not
running. Test coverage is 9.26%.

Architecture quality
The architecture quality score is 3 out of 10. The development environment
was Hardhat with implementing tests and deployment, but instructions to run
them were missing.

Security score
As a result of the audit, the code contains 16 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.2.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

26 August 2022 16 1 1 0

11 October 2022 16 0 0 0

www.hacken.io
10

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
12

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
13

System Overview

G21 Capital Marketing is a lending platform that accepts different ERC20
tokens as collateral to borrow liquidity as GCD tokens. System mints GCD
tokens when a debt position is created and burns GCD tokens when a debt
position is closed.

● There are three fees for users to borrow GCD tokens:
○ Stability fee

■ It is a fee that needs to be paid when a user deposits
collateral to borrow GCD tokens. The price is stable and
does not fluctuate during the borrowing period once set.

○ Liquidation fee
■ It is calculated as the percentage of the loan which the

borrower has to pay if liquidation is triggered. If this
happens, the liquidation fee is deducted from the
collateral that the user used to open the position.

○ Pool fee
■ It is a stable 3% fee that is deducted from the

conversion of assets and USD values in the oracle
contract (UniswapV3Oracle Line#97).

● CDPRegistry — a contract that stores dynamically the data of
collateral addresses and their owner addresses. It contains check
functions to add or remove the owner addresses from the
Collateralized Debt Position(CDP) data according to users’
activeness.

● CollateralRegistry — a contract that allows adding or removing a
collateral token address to the system.

● GCD- a simple ERC20 token contract. Total supply is not capped, and
additional minting is allowed. Vault contract address can mint new
tokens or burn users’ tokens without allowance.
It has the following attributes:

○ Name: GCD Stablecoin
○ Symbol: GCD
○ Decimals: 18

● Vault — is the core contract that stores and manages collaterals of
all positions and debts. It controls the minting or burning of GCD
stable coins according to the borrow or repay transactions.

● VaultParameters — an upgradable contract that allows management of
GCD’s system operations. It sets the fundamentals of the project that
are allowed collaterals, oracle types, stability fee, liquidation
fee, vault access and the foundation.

● OracleRegistry — a contract that manages the oracles by allowing
setting or unsetting oracles and oracle types for assets.

● CDPManager01 — a contract that has functions to be used by the users
to directly deposit collaterals, borrow GCD tokens, or repay the GCD

www.hacken.io
14

tokens. It is responsible for calling functions in the Vault contract
to manage collateralized debt positions.

● LiquidationAuction02 — a contract that allows to burn GCD tokens and
take calculated collateral tokens amount from liquidated positions.
This buyout function can be called by anyone, but it is for the
manager of the system.

● ChainlinkedOracleMainAsset — oracle contract that gets USD prices of
given tokens.

● VaultManagerParameters — management contract that allows manager to
set borrowing and liquidation fees.

● ReentrancyGuard — a contract module that helps prevent reentrant
calls to a function.

● TransferHelper — a simple contract that contains safe transfer and
safe approve functions for the given ERC20 token addresses and
values.

● ForceTransferAssetStore — a contract that maps assets to the boolean
status of forcing 1 token transfer.

● UniswapV3Oracle — a contract to get USD value of GCD tokens. During
this conversion, the default pool fee is 3%, which is stable.

● TickMath — a math library for computing sqrt prices for ticks of size
1.0001.

● FullMath — enables division and multiplication with no loss of
precision when an intermediate value is overflown.

● OracleLibrary — library contract that provides functions to integrate
with V3 pool oracle.

● PoolAddress — a contract that provides functionality for deriving a
pool address from the factory, tokens, and fee.

● LowGasSafeMath — library contract that provides optimized overflow
and underflow safe math operations.

Privileged roles
● The manager role can:

○ add/remove an asset address to be used as collateral
○ set stability and liquidation fees, oracle type and token

debt limit
○ mark asset as `shouldForceTransfer`
○ set/unset oracle addresses and their oracle types
○ set quote params in UniswapV3Oracle
○ set default TWAP period
○ set default quote asset

● The vault role can:
○ mint/burn GCD tokens
○ create new debt positions, deposit collaterals, borrow

GCD tokens, withdraw collaterals, repay debt and update
users’ debt

www.hacken.io
15

● The users can:
○ deposit collaterals
○ borrow/repay GCD tokens

www.hacken.io
16

Findings

Critical

No critical severity issues were found.

High

1. Data Consistency

After removing an oracle type, “kydonix” array is not getting
updated. So, it may include oracles that do not exist anymore and may
allow lending transactions with those oracles.

Path: ./gcd-protocol-502124341/contracts/OracleRegistry.sol:
setKeydonixOracleTypes()

Recommendation: Update the list every time removing an Oracle.

Status: Mitigated (with Customer notice)

Medium

1. Data Consistency

There is no check for assets if it is registered collateral and has
an oracle. In a scenario like gcdAmount=0 and assetAmount!=0, users
will be able to deposit any token with join function.

Therefore, this may lead them to pay an unnecessary fee during
depositing, and this inconsistent part may mislead the users.

Path: ./gcd-protocol-502124341/contracts/Vault.sol: join(),
depositMain()

Recommendation: Check oracle type or use isCollateral function to
validate asset address.

Status: Mitigated (with Customer notice)

Low

1. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Paths: ./gcd-protocol-502124341/contracts/VaultParameters.sol :
initialize(),
./gcd-protocol-502124341/contracts/auction/LiquidationAuction02.sol :
buyout(),
./gcd-protocol-502124341/contracts/oracles/OracleRegistry.sol:
setKeydonixOracleTypes(), unsetOracle(), unsetOracleForAssets(),
./gcd-protocol-502124341/contracts/vault-managers/CDPManager01.sol:
isLiquidatablePosition(), utilizationRatio(),
./gcd-protocol-502124341/contracts/vault-managers/CDPRegistry.sol:
getCdpsCountForCollateral(),

www.hacken.io
17

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Reported

2. Misleading Variable

maxOracleType variable does not take a constant value and can be
changed by adding new oracle types.

To get the oracles with getOracles() function, the function iterates
over all indexes until the maxOracleType value despite some indexes
being empty.

Path: ./gcd-protocol-502124341/contracts/oracles/OracleRegistry.sol

Recommendation: Restrict the number of oracle types and fix the
unnecessary iterations.

Status: Reported

3. Redundant Code Block

On lines 112-116, declaring the r local variable is redundant since
the function can already return the cdps local variable.

Path: ./gcd-protocol-502124341/contracts/CDPRegistry.sol:
getCdpsByOwner()

Recommendation: Remove the redundant code block.

Status: Reported

4. State Variables' Default Visibility

cdpList and cdpIndex mapping’s visibilities are not specified.
Specifying state variables' visibility helps to catch incorrect
assumptions about who can access the variable.

This makes the contract`s code quality and readability higher.

Path: ./gcd-protocol-502124341/contracts/CDPRegistry.sol

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Reported

5. Commented Code Parts

In the contract, 184-185 lines are commented parts of the code.

This reduces code quality.

Path: ./gcd-protocol-502124341/contracts/GCD.sol

Recommendation: Remove commented parts of the code.

Status: Reported

www.hacken.io
18

6. Commented Code Parts

In the contract, line 100 is a commented part of the code.

This reduces code quality.

Path:

./gcd-oracles-502124076/contracts/impl/UniswapV3Oracle.sol

Recommendation: Remove commented parts of the code.

Status: Reported

7. Commented Code Parts

In the TickMath contract, line 26 is a commented part of the code.

This reduces code quality.

Path:

./gcd-oracles-502124076/contracts/impl/uniswapV3Oracle/TickMath.sol

Recommendation: Remove commented parts of the code.

Status: Reported

8. Missing Requirement

In the GCD token contract, inside the decreaseAllowance function,
(currentallowance >= subtractedValue) control is not checked. It does
not fit the requirements inside the comment “`spender` must have an
allowance for the caller of at least `subtractedValue`.”

Path: ./gcd-protocol-502124341/contracts/GCD.sol

Recommendation: Add the requirement mentioned in the comments.

Status: Reported

9. Missing Requirement

In the GCD token contract, _burn function does not have a require
statement to check “accountBalance >= amount” status. Therefore, it
is impossible to demonstrate to the users the reason of the reverting
transaction due to insufficient balance.

Path: ./gcd-protocol-502124341/contracts/GCD.sol

Recommendation: Add the requirement mentioned in the comments.

Status: Reported

10. Zero Valued Transactions

It is possible to deposit 0 Ether with the depositETH function. Users
may send the wrong input to this function and pay a fee for nothing.

Path: ./gcd-protocol-502124341/contracts/Vault.sol

www.hacken.io
19

Recommendation: Add this requirement (msg.value > 0).

Status: Reported

11. Floating Pragma

Some of the contracts and interfaces have different versions of
Solidity. Locking the pragma helps ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler
version that might introduce bugs that affect the contract system
negatively.

Path: all

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Reported

12. Outdated Solidity Version

Some contracts have outdated Solidity versions. Using an outdated
compiler version can be problematic, especially if publicly disclosed
bugs and issues affect the current compiler version.

Path: all

Recommendation: Use a contemporary compiler version.

Status: Reported

13. Out-of-Gas Possibility

Iterating over large structures (user-supplied or not), performing
external calls in loops may lead to out-of-Gas exceptions. If the
list of assets is too large, This can lead to out-of-Gas exceptions.

Path: ./gcd-protocol-502124341/contracts/CDPRegistry.sol:
getAllCdps()

Recommendation: Implement size limitations.

Status: Reported

14. Style Guide Violation

The provided projects should follow the official guidelines.

Path: all

Recommendation: Follow the official guide:
https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Status: Reported

15. Unused Import

Unused libraries/imports/functions/arguments should be removed from
the contracts. This will help lower the Gas cost.

www.hacken.io
20

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Paths: ./gcd-protocol-502124341/contracts/oracles/OracleRegistry.sol:
VaultParameters import

./gcd-protocol-502124341/contracts/vault-managers/VaultManagerParamet
ers.sol: VaultParameters import

./gcd-protocol-502124341/contracts/CollateralRegistry.sol:
VaultParameters import

./gcd-protocol-502124341/contracts/GCD.sol: VaultParameters import

./gcd-protocol-502124341/contracts/Vault.sol: VaultParameters import

./gcd-protocol-502124341/contracts/auction/ForceTransferAssetStore.so
l: VaultParameters import

./gcd-protocol-502124341/contracts/auction/LiquidationAuction02.sol:
IOracleRegistry import, IWrappedToUnderlyingOracle import

Recommendation: Remove unused imports.

Status: Reported

16. Contracts that Cannot Be Compiled

Due to the usage of the unlocked and different Solidity versions,
some contracts in gcd-oracles repository create compilation errors.

Path: ./gcd-oracles-502124076/contracts

Recommendation: Use the same and locked compiler version for all
contracts.

Status: Reported

www.hacken.io
21

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
22

