
Customer: IMPT.io
Date: Oct 17th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
IMPT.io

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://impt.io

Timeline 12.09.2022 – 17.10.2022

Changelog 14.09.2022 – Initial Review
17.10.2022 - Second Review

www.hacken.io
2

https://website.com

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 14

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by IMPT.io (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/pixelplex/impt-smartcontracts
Commit:

75b5c9f6b8cd280f58a71068e1450d0bba97b405
Documentation:

Whitepaper (partial functional requirements provided)

Functional requirements: Document provided

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/access/Operator.sol
SHA3: de3f0a9d15a74b060a08918b0801a1697e51553ff7932f32de3521ef31d9c515

File: ./contracts/access/TwoStageOwnable.sol
SHA3: c463151e935b9ab2aea53a631935121afbe0a4d9ad68ea64a78a5c5ce180d646

File: ./contracts/IMPT.sol
SHA3: 72c66a38d99a49c07e4d773bb6da6a7210de418b784c08f532b2bae58b867732

File: ./contracts/mocks/MockedVesting.sol
SHA3: 5c0273ec45e715002baee44a0367ebc8b9a39a5ea4b1c37f138ca22d79b13036

File: ./contracts/mocks/TwoStageOwnableMock.sol
SHA3: a565c964bb7b58e531281028f795685ca44fdc925d516ea98acc60f489cfa00d

File: ./contracts/Vesting.sol
SHA3: ffd047f70a810325f7c00a95a5b8b4c7f71634fc4ebc47315cca1ecd0e12ad20

Second review scope
Repository:

https://github.com/anonymous-001-1/IMPT
Commit:

39d3c96afaefe7f8ea6dd898dd9d281b21433ec6
Documentation:

Whitepaper (partial functional requirements provided)

Functional requirements: Document provided

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/IMPT.sol
SHA3: 126f8e8d0c78a4beadb89ab45e63eaf041aec1b083fb085f567c48d5067aa7d6

File: ./contracts/TwoStageOwnable.sol
www.hacken.io

4

https://github.com/pixelplex/impt-smartcontracts
https://impt.io/documents/Whitepaper.pdf
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/
https://github.com/anonymous-001-1/IMPT
https://impt.io/documents/Whitepaper.pdf
https://github.com/user/repo/docs/really-long-link-should-be-%20manually-divided-by-spaces/in-order-to-look-pretty/

SHA3: f117929396c8a8ef59254e7231def6a5a7af9b0faa1c93e0cd76f3480e9010ce

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 5 out of 10.

● Technical requirements are not provided.
● Functional requirements are provided.

Code quality
The total Code Quality score is 8 out of 10.

● The code follows best practices.
● The code partially follows official language style guides.
● Development environment is configured.

Test coverage
Test coverage of the project is 93.1%.

● Deployment and basic user interactions are covered with tests.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.9.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

14 September 2022 6 2 2 0

14 October 2022 1 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

IMPT.io is a project that includes IMPT tokens and Vesting contracts:
● IMPT — simple ERC-20 token that mints initial supply to the given

list of addresses during deployment. Additional minting is not
allowed.
It has the following attributes:

○ Name: IMPT
○ Symbol: IMPT.io
○ Decimals: 18
○ Total supply: 3b tokens.

● TwoStageOwnable - an abstract contract for adding and additional
process of owner changing. The additional process is that the owner
creates an order to assign a new owner, and the new owner can accept
or not respond to that order.

Privileged roles
● The owner of the IMPT.io can:

○ pause and unpause the contract

Risks
● The deployer can provide two lists that contain addresses and

amounts. In the constructor of IMPT, it sends specified amounts to
addresses. As a result, the deployer can change the total supply of
IMPT tokens during deployment.

● Vesting and Operator contracts are not in the scope of the audits
after the first one, so the secureness of those contracts cannot be
guaranteed.

www.hacken.io
11

Findings

Critical

No critical severity issues were found.

High

1. Potential Out-of-Gas Exception

In the constructor of the IMPT, the deployer provides two lists to
mint the initial supply to the specific addresses. However, there is
no check for the length of the provided lists.

This issue may cause the deployment failure with a run-out of Gas
exception.

Paths: ./contract/IMPT.sol: constructor()

Recommendation: Implement a length check for the recipients_ and
amounts_ parameters of IMPT constructor to avoid “run out of Gas”
exception.

Status: Fixed (39d3c96afaefe7f8ea6dd898dd9d281b21433ec6e)

Medium

No medium severity issues were found.

Low

1. Variable Shadowing

In the constructor of the IMPT decimals variable shadows ERC20’s
decimals() function.

Path: ./contracts/IMPT.sol : constructor()

Recommendation: Rename related variables/arguments.

Status: Fixed (39d3c96afaefe7f8ea6dd898dd9d281b21433ec6e)

2. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared external.

Paths: ./contracts/TwoStageOwnable.sol: nominatedOwner()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (39d3c96afaefe7f8ea6dd898dd9d281b21433ec6e)

3. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

www.hacken.io
12

This can lead to unwanted external calls to 0x0.

Paths: ./contracts/TwoStageOwnable.sol: _nominateNewOwner()

Recommendation: Implement zero address checks.

Status: Fixed (39d3c96afaefe7f8ea6dd898dd9d281b21433ec6e)

4. Style Guides Violation

The provided projects should follow the official guidelines.

Paths: ./contracts/TwoStageOwnable.sol

Recommendation: Follow the official Solidity guidelines.

Status: Reported

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
14

