
Customer: RaceKingdom
Date: Jun 24th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Race
Kingdom

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Vesting

Platform EVM

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website https://racekingdom.io

Timeline 16.06.2022 – 24.06.2022

Changelog 16.06.2022 – Initial Review
24.06.2022 – Initial Review

www.hacken.io
2

https://racekingdom.io

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Race Kingdom (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/racekingdom/smart-contract
Commit:

93057ad60b2938b3f7cdac00bdff7cf907902a16
Technical Documentation:

Type: Token analysis sheet
Link: https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7a

UDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/RaceKingdom.sol
SHA3: a200b73ac0b013536c70c9eb14fc2512dc1bc2f091c1101e3851c1b281009bbf

File: ./contracts/RKVesting.sol
SHA3: 4bdbb32d9423799bcb131abde45409bf8a35742e7d3cbd7525285d792a4a5a9b

Second review scope
Repository:

https://github.com/racekingdom/smart-contract
Commit:

d44e3f1ad5e6237a424fb8c70406a77542015fa8
Technical Documentation:

Type: Token analysis sheet
Link: https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7a

UDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0

Type: Whitepaper
Link: https://racekingdom.io/whitepaper-30.pdf

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/RaceKingdom.sol
SHA3: 22a527c20e6ee9815480a2c4a2e435ed7427f8714018cf54708ff99f2f932787

File: ./contracts/RKVesting.sol
SHA3: 54c25ba5023d74d7afeb3108e08fc91002419e3a2547be361dc89eb642d29d90

www.hacken.io
4

https://github.com/racekingdom/smart-contract
https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7aUDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0
https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7aUDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0
https://github.com/racekingdom/smart-contract
https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7aUDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0
https://docs.google.com/spreadsheets/d/1KcPYFvoq81n7aUDHzS-fNlwM6N1tf0H4yOEDnYqa-Zk/edit#gid=0
https://racekingdom.io/whitepaper-30.pdf

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
5

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided documentation, that described vesting logic. The
total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 10 out of 10. Code is well-formatted,
easy-readable, and without duplications. Good unit test coverage.

Architecture quality
The architecture quality score is 10 out of 10. Logic is separated by
different files, following the single responsibility principle.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

www.hacken.io
6

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
7

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution

Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
9

System Overview

Race Kingdom is an animal racing metaverse with the following contracts:
● RaceKingdom — simple ERC20 token that mints all initial supply to

addresses that will be used in vestings. Additional minting is not
allowed.
It has the following attributes:

○ Name: Race Kingdom
○ Symbol: ATOZ
○ Decimals: 18
○ Total supply: 3.7b tokens.

● RKVesting - a contract that is responsible for the control of vesting
periods and unlocks.

Privileged roles
● The owner of the RKVesting contract can revoke the vesting schedule

for a specific identifier.
● The owner of the RKVesting contract can withdraw exceeded tokens from

the vesting pool.
● The owner of the RKVesting contract can create a vesting schedule for

a beneficiary.

Risks
● In case of an admin keys leak, an attacker can lock all token

transactions or change vestings.

www.hacken.io
10

Findings

Critical

No critical severity issues were found.

High

1. Vesting requirements compliance.

As per provided documentation - seed round allocation should be 296m
of tokens, but in the RaceKingdom contract, it is declared 269m of
tokens for the seed round.

Contracts: RaceKingdom.sol

Recommendation: Update documentation or seed round allocation.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

Medium

1. Stucked funds in the contract.

The contract contains payable functions to receive native tokens, but
there are no methods to withdraw them from the contract. As a result
- all sent native tokens to the contract would be stuck.

Contracts: RKVesting.sol

Recommendation: Remove receive and fallback functions to forbid
accidental native coin transfers.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

Low

1. The public function could be declared external.

Public functions that are never called by the contract should be
declared external to save Gas.

Contracts: RaceKingdom.sol, RKVesting.sol

Functions: name, symbol, decimals, revoke, withdraw,
computeReleasableAmount, getWithdrawableAmount,
computeNextVestingScheduleIdForHolder,
getLastVestingScheduleForHolder

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

2. Zero address is allowed.

The new address for the service signer does not check if it is a zero
address, which could be sent as a default value.

www.hacken.io
11

Contracts: RKVesting.sol

Functions: createVestingSchedule

Recommendation: Add check for zero address for _beneficiary.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

3. Redundant payable address cast.

Release function casts beneficiary address to payable, which is
redundant, as contract transfer ERC20 token, not the network native
token.

Contracts: RKVesting.sol

Functions: release

Recommendation: Remove payable cast before the transfer.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

4. Missing vesting validation.

createVestingSchedule function does not validate if the cliff period
is less than the vesting duration. If the cliff is bigger than the
duration - nothing would be released to the beneficiary before the
cliff is ended.

Recommendation: Validate cliff duration when creating a vesting
schedule.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

5. Variable Shadowing.

Solidity allows for ambiguous naming of state variables when
inheritance is used. Contract A with a variable x could inherit
contract B, which has a state variable x defined. This would result
in two separate versions of x, accessed from contract A and the other
from contract B. In more complex contract systems, this condition
could go unnoticed and subsequently lead to security issues.

Contracts: RaceKingdom.sol

Functions: allowance(address owner) -> Ownable.owner(),
approve(address owner) -> Ownable.owner(),
transfer(address owner) -> Ownable.owner(),
increaseAllowance(address owner) -> Ownable.owner(),
decreaseAllowance(address owner) -> Ownable.owner(),
_approve(address owner) -> Ownable.owner(),
_spendAllowance(address owner) -> Ownable.owner(),

Recommendation: Consider renaming the function argument.

Status: Fixed (d44e3f1ad5e6237a424fb8c70406a77542015fa8)

www.hacken.io
12

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
13

