
Customer: SaucerSwap
Date: November 25th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
SaucerSwap

Approved By Noah Jelich | Lead Solidity SC Head at Hacken OU

Type Swapping, Payment managing

Platform Hedera

Network Hedera Network

Language Solidity

Methodology Link

Website https://www.saucerswap.finance/

Changelog 24.10.2022 – Initial Review
25.11.2022 – Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://www.saucerswap.finance/

Table of contents
Introduction 4

Scope 4

Severity Definitions 8

Executive Summary 9

Checked Items 10

System Overview 13

Findings 15

Disclaimers 19

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by SaucerSwap (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope

Repository https://github.com/saucerswaplabs/saucerswap-saucer

Commit 07e68a288b75b4cb336fd17fc36d62b717d031bd

Docs/Whitepaper https://docs.saucerswap.finance/

Docs/Functional -

Docs/Technical -

Contracts Addresses -

Contracts File: ./contracts/BrewSaucer.sol
SHA3:
39278a26330be8ad9a8254c9e466cb0cba0a93d5633e1f774b32c59ca47955da

File: ./contracts/hedera/HederaResponseCodes.sol
SHA3:
620251501964702a1416fae08a5d5f83ce2fae4262ddb838d3274d25c303a619

File: ./contracts/hedera/HederaTokenService.sol
SHA3:
3ec43eaa6e071fac89ce5110d48206bea13a88b5bcee072977f16a8cfbdb5051

File: ./contracts/hedera/IExchangeRate.sol
SHA3:
897c29fa822197ea10c75727573ee821c12184e9028095d9c2fd30949a760a51

File: ./contracts/hedera/IHederaTokenService.sol
SHA3:
caca5493eb23786977608091738716059211fdbcbc1c756129c0f079d77cf767

File: ./contracts/hedera/PriceOracle.sol
SHA3:
9630da5c390efd9176ca176d8a7d4c98d6a2dcaf9e1e0fe50a934f56514c4748

File: ./contracts/hedera/SafeHederaTokenService.sol
SHA3:
429da20c80dee47ab406c268b731a625035b57d79d8317116eca4128f42d53a6

File: ./contracts/interfaces/IPaymentSplitter.sol
SHA3:
504f924df328a2089aa30f94c3f9c9319ae0b2b205a7204935b4f5c73244459d

www.hacken.io
4

https://docs.saucerswap.finance/

File: ./contracts/interfaces/ISwapper.sol
SHA3:
797f568e9b1217a6db6e6881942ec98cd6105f6527ca08a881cdfd0a091455e2

File: ./contracts/interfaces/IUniswapV2Factory.sol
SHA3:
3cf2d58f410b3b25081697738e8dd9fd75ef46848c56f0700a54a1843e7e72ef

File: ./contracts/interfaces/IUniswapV2Pair.sol
SHA3:
d9d65c0b2833065a4af975ba26dc175f9e5a52064a35fb82bffc61ff46a2c191

File: ./contracts/interfaces/IWHBAR.sol
SHA3:
1411e6c44ab8ef2158191cd72da10b59ad9f25e17622625c48d3463315876db7

File: ./contracts/libraries/Bits.sol
SHA3:
1d27945c9c71aa7d4a5a1d2869a55d1af102174e07eedb6ee409af056e33a0ad

File: ./contracts/Migrations.sol
SHA3:
f38ad4185f0fa410f3427a0bae9195f29bf1c8806f1a019cc727d7c39b53811d

File: ./contracts/MotherShip.sol
SHA3:
42c00d2e2414db83c46e3ff5e12a63d21362bf8e28ff0f32a7be36c5fb052564

File: ./contracts/PaymentSplitter.sol
SHA3:
57514e325b2de4e3be0a11ce69777321d9e090c4aaf7b335b20b221aa969ecc1

File: ./contracts/PaymentSplitterHbar.sol
SHA3:
d280582e4df200abcb2000d19992fa3127a7b3397d7b45e9525da8a394512bd0

File: ./contracts/Swapper.sol
SHA3:
3d5e20fedd4f4e5931bda8d90429a771d492fe40504cf5badad6e206b0c95174

Second review scope

Repository https://github.com/saucerswaplabs/saucerswap-saucer

Commit fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5

Docs/Whitepaper https://docs.saucerswap.finance/

Docs/Functional -

Docs/Technical -

Contracts Addresses -

Contracts File: ./contracts/BrewSaucer.sol

www.hacken.io
5

https://docs.saucerswap.finance/

SHA3:
6646c98a077c8747881f801b384f7e2a785107ac7cf990aac610dd44910d0d2a

File: ./contracts/hedera/HederaResponseCodes.sol
SHA3:
620251501964702a1416fae08a5d5f83ce2fae4262ddb838d3274d25c303a619

File: ./contracts/hedera/HederaTokenService.sol
SHA3:
3ec43eaa6e071fac89ce5110d48206bea13a88b5bcee072977f16a8cfbdb5051

File: ./contracts/hedera/IExchangeRate.sol
SHA3:
897c29fa822197ea10c75727573ee821c12184e9028095d9c2fd30949a760a51

File: ./contracts/hedera/IHederaTokenService.sol
SHA3:
caca5493eb23786977608091738716059211fdbcbc1c756129c0f079d77cf767

File: ./contracts/hedera/PriceOracle.sol
SHA3:
9630da5c390efd9176ca176d8a7d4c98d6a2dcaf9e1e0fe50a934f56514c4748

File: ./contracts/hedera/SafeHederaTokenService.sol
SHA3:
429da20c80dee47ab406c268b731a625035b57d79d8317116eca4128f42d53a6

File: ./contracts/interfaces/IPaymentSplitter.sol
SHA3:
27cc7d6396f005b319ba93d934d49db7d0fbd7bf9d658c7fb34500a7d22ca8f8

File: ./contracts/interfaces/ISwapper.sol
SHA3:
0ce97b023dab800b3708bedb48b5d77c30995257ca9999ed86b6db555ec23d56

File: ./contracts/interfaces/IUniswapV2Factory.sol
SHA3:
3cf2d58f410b3b25081697738e8dd9fd75ef46848c56f0700a54a1843e7e72ef

File: ./contracts/interfaces/IUniswapV2Pair.sol
SHA3:
d9d65c0b2833065a4af975ba26dc175f9e5a52064a35fb82bffc61ff46a2c191

File: ./contracts/interfaces/IWHBAR.sol
SHA3:
1411e6c44ab8ef2158191cd72da10b59ad9f25e17622625c48d3463315876db7

File: ./contracts/libraries/Bits.sol
SHA3:
1d27945c9c71aa7d4a5a1d2869a55d1af102174e07eedb6ee409af056e33a0ad

File: ./contracts/Migrations.sol
SHA3:
f38ad4185f0fa410f3427a0bae9195f29bf1c8806f1a019cc727d7c39b53811d

File: ./contracts/MotherShip.sol
SHA3:
412e248717ec42b964d73ad3b0aed6ae593cfbc9da6dd8cc5a588147f672a5bb

www.hacken.io
6

File: ./contracts/PaymentSplitter.sol
SHA3:
cf7bf36b78837298d4b254995209d426351aa092686ddfa6680246555853aca5

File: ./contracts/PaymentSplitterHbar.sol
SHA3:
ad25e077f16c7a8e0bd2005af7a488d85fcce8a4810d50e1592b6e5c54d5fba7

File: ./contracts/Swapper.sol
SHA3:
61de195edb6d1320eda00f245b14e8837c09f9602e05d3cf0ddb43ba5c4e1004

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 9 out of 10.

● Functional requirements are provided.
● Technical description that demonstrates deployment instructions,

instructions on how to run tests etc, is provided.
● Function explanation as NatSpec format is mostly followed in the

code.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● Code architecture is well-designed.
● Code mostly follows the style guide.
● Unused declarations are detected.

Test coverage
Test coverage of the project is 46% (function coverage).

● Since coverage could not be run, the percentage of test coverage
could not be measured.

● Hacken made a custom tool (attached with the report) for
approximating the functional coverage statically.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

24 October 2022 9 1 3 0

16 November 2022 2 0 0 0

28 November 2022 2 0 0 0

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12

System Overview

SaucerSwap is a mixed-purpose system with the following contracts:
● BrewSaucer - handles rewards for XSAUCE holders by trading tokens

collected from fees for SAUCE.
● MotherShip — a contract that allows swapping SAUCE tokens to XSAUCE

tokens and vice versa.
● PaymentSplitter — a token payment management contract that

distributes the contract balance to the shareholders. New payee
addresses can be added, and existing share amounts can be set.

● PaymentSplitterHbar — a native token payment management contract that
distributes the contract balance to the shareholders. New payee
addresses can be added, and existing share amounts can be set.

● Swapper — a contract that receives tokens to transfer to the pair
contract and calls the swap function in the pair contract using an
interface.

● HederaTokenService — an abstract contract that provides main Hedera
token operations such as transferring, minting, token associating. It
helps to create fungible tokens.

● SafeHederaTokenService — an abstract contract that does the same
operations with HederaTokenService but checks the response codes of
the transactions.

● HederaResponseCodes — an abstract contract that stores the Hedera
transactions’ response codes.

● IExchangeRate — interface of ExchangeRate contract to convert tiny
cents into tiny bars or vice versa.

● IHederaTokenService — interface of HederaTokenService contract.
● Bits — a library that sets the bit at the given 'index' in 'self' to

'1'.

Privileged roles
● The owner of the PaymentSplitter contract can add a payee address and

change an existing payee’s share amount.
● The owner of the PaymentSplitterHbar contract can add a payee address

and change an existing payee’s share amount.
● The owner of the BrewSaucer contract can add/revoke Auth addresses,

set stake address, splitter address, max burn length, max conversion
length, WHbar contract address, developer cut amount and developer
address.

● Auth privileged role of the BrewSaucer contract can
○ associate the tokens to BrewSaucer contract
○ set slippage
○ set bridge address
○ burn tokens
○ convert tokens
○ release sauce and hbar from respective splitters

www.hacken.io
13

○ swap WHbar
○ send SAUCE tokens to Mothership contract.

www.hacken.io
14

Findings

Critical

No critical severity issues were found.

High

1. Checks-Effects-Interactions Pattern Violation

In release function, first, the payment amount is sent to the payee
then the owed amount is updated as zero. Although the function has a
reentrancy guard, a payee contract that has receive fallback function
can easily revert the transaction after receiving the tokens and send
them to another address.

This may lead payees to steal the funds.

Path: ./contracts/PaymentSplitterHbar.sol : release()

Recommendation: Edit the order of internal state changes to make it
safe. First, update the owed amount, then make the payment.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

2. Requirement Compliance

On line 30, devCut variable’s comment says it is initialized as 20%
in the constructor. However, it remained zero.

Path: ./contracts/BrewSaucer.sol

Recommendation: Initialize the variable in the constructor.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

3. Authorization Through tx.origin

Preventing calls from contracts is highly discouraged. It breaks
composability, breaks support for smart wallets like Gnosis Safe, and
does not provide security since it can be circumvented by calling
from a contract constructor.

Path: ./contracts/BrewSaucer.sol

Recommendation: Remove the mandatory EOA check and protect contract
against flashloan attacks using previous blocks data/ price data
buffer.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

Medium

www.hacken.io
15

1. Checks-Effects-Interactions Pattern Violation

The function release returns uint. The call made to the
releaseFromSplitters does not check its return value. This means that
the contract will continue its execution even wrong amount of token
is released.

Path: ./contracts/BrewSaucer.sol : releaseFromSplitters()

Recommendation: Implement a check of the returning value.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

Low

1. Checks-Effects-Interactions Pattern Violation

As a best practice, always follow the safest order when a function
has external calls.

Path: ./contracts/MotherShip.sol : enter()

Recommendation: First, receive SAUCE tokens from the user and then
mint XSAUCE tokens to the user's address.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

2. Unused Variables

_totalReleased and _released variables are never initialized and used
anywhere.

Redundant declarations cause unnecessary Gas consumption and decrease
code readability.

Paths: ./contracts/PaymentSplitter.sol

./contracts/PaymentSplitterHbar.sol

Recommendation: Remove the unused variables or initialize them in
required places.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

3. Commented Code Parts

Line 145 has commented code. This does not create security issues,
but users may interpret it as an unfinished implementation.

Paths: ./contracts/PaymentSplitter.sol : adjustSharesPayee()

./contracts/PaymentSplitterHbar.sol : adjustSharesPayee()

Recommendation: Remove the commented code part.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

www.hacken.io
16

4. Style Guide Violation

To provide consistency, all contracts should follow the official
style guide.

Paths: all

Recommendation: Follow the official Solidity style guide.
https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Status: Reported (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

5. Non-Finalized Code

PriceOracle contract is for test purposes only. Therefore, it should
be removed from the project.

Paths: all

Recommendation: Remove the PriceOracle contract from the project.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

6. Variable that Should Be Declared Constant

maxNumberOfPayees variable is declared immutable, but it is
initialized during declaration. Because of that, it should be
constant instead of immutable.

BOUNTY_FEE variable is not changed anywhere and is declared as a
variable. To save Gas, it should be declared as constant.

Paths: ./contracts/PaymentSplitter.sol

./contracts/PaymentSplitterHbar.sol

./contracts/BrewSaucer.sol

Recommendation: Change the variables’ type to constant.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

7. Functions that Can Be Declared External

To save Gas, public functions that are never called in the contract
should be declared as external.

Path: ./contracts/Mothership.sol: enter(), leave()

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

8. Redundant Assignment

www.hacken.io
17

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Boolean variables take a false value as default. Therefore, there is
no need to assign a false value to anyAuth variable during global
declaration.

Path: ./contracts/BrewSaucer.sol

Recommendation: Remove the assignment to save Gas.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

9. Redundant Code

anyAuth checks should be inside the onlyAuth modifier, based on its
logic. So, instead of writing the require statements for each
function, use only the modifier.

Path: ./contracts/BrewSaucer.sol

Recommendation: Move anyAuth checks into the onlyAuth modifier.

Status: Fixed (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

10. Unused Event

LogSetAnyAuth event is not used anywhere, although it is declared.

Redundant code consumes unnecessary Gas.

Path: ./contracts/BrewSaucer.sol

Recommendation: Remove the LogSetAnyAuth event.

Status: New (Revised commit:
fea69ce49b94d7aa25ba4d2dc0a2c71599e048c5)

www.hacken.io
18

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
19

