
Customer: Lith LCC
Date: Jun 29th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Lith
LCC

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU
Noah Jelich | Senior Solidity SC Auditor at Hacken OU

Type ERC20 Upgradeable Token, Migration, Fee Distribution

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website https://www.lithtoken.io/

Timeline 17.05.2022 – 29.06.2022

Changelog
25.05.2022 – Initial Review
07.06.2022 - Second Review
29.06.2022 - Third Review

www.hacken.io

https://www.lithtoken.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 13

Disclaimers 18

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Lith LCC (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/LITHToken/LITx-Open/
Commit:

8c8c60d
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link: https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf

Type: Functional requirements
Link: No, provided in whitepaper

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/FeeDistributor.sol
SHA3: f2f1f43bafeeb1b35c8015374100358893c0b3c02a37c8023eea3a88560d5678

File: ./contracts/LITx.sol
SHA3: 599134d37cd276e37ed9fcffde64cd63055054532b7f8bcc2e45632ca09aae39

File: ./contracts/utils/BannedUpgradeable.sol
SHA3: a749028c51808e1a3fcf8bd8aa668e4bc0cf0318ddb09767c018e2e09c39eb62

File: ./contracts/utils/LITh.sol
SHA3: 07531f0a7d4aaa9e3b1f53248e78c15dcd05ae9136c371ac51ac2a78e84c34d3

File: ./contracts/utils/MerkleDistributor.sol
SHA3: 27519255f0d24c2ee76f488a2615e64a00068881d5ec578faaa1e9d4e9682b45

Second review scope
Repository:

https://github.com/LITHToken/LITx-Open/
Commit:

e8e9a89
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link: https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf

Type: Functional requirements
Link: No, provided in whitepaper

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/FeeDistributor.sol
SHA3: f848b39cbc97c61a2aa0ed18c340a7c1d3e495f66d7fcdaee73504130f60dbf6

File: ./contracts/LITx.sol
www.hacken.io

https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf
https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf

SHA3: 43a507ec15841e120ce40af4aa11ab1d127d4ed64d4b6fcbe6e7a2ac55f1b1dc

File: ./contracts/utils/BannedUpgradeable.sol
SHA3: 1a6eb70459332ca1841a7a0e6317ffde6f7a582d7e72479eb14623031efde4b5

File: ./contracts/utils/LITh.sol
SHA3: dad505270f0c77c580444ae76540c7f70f4031a7bc98b70f7994fc9575691cd8

File: ./contracts/utils/MerkleDistributor.sol
SHA3: 5425b4334795afb426e679a2651d4494eaec4f02b3a7be00b2b04914e5582780

Third review scope
Repository:

https://github.com/LITHToken/LITx-Open/
Commit:

e03e497
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link: https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf

Type: Functional requirements
Link: No, provided in whitepaper

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/FeeDistributor.sol
SHA3: c3bcf2db42efa775dc1da0068e66ee91eb267eed2a45b1c1c9f4bf7c19dd945d

File: ./contracts/LITx.sol
SHA3: 4d02295f9f9a1336311984a2919223e7721a8a27447e6cc086d61519ad952fc2

File: ./contracts/utils/BannedUpgradeable.sol
SHA3: 1a6eb70459332ca1841a7a0e6317ffde6f7a582d7e72479eb14623031efde4b5

File: ./contracts/utils/LITh.sol
SHA3: dad505270f0c77c580444ae76540c7f70f4031a7bc98b70f7994fc9575691cd8

File: ./contracts/utils/MerkleDistributor.sol
SHA3: 5425b4334795afb426e679a2651d4494eaec4f02b3a7be00b2b04914e5582780

www.hacken.io

https://www.lithtoken.io/hubfs/LITH-Token-Whitepaper.pdf

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided both functional and technical requirements. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 8 out of 10. Follows official language style
guides. Incomplete test coverage - missing negative tests.

Architecture quality
The architecture quality score is 10 out of 10. Clean and clear
architecture.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Not Relevant

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io

System Overview

LITh is a mixed-purpose system with the following contracts:
● LITx - upgradeable ERC-20 token that mints all initial supply to the

token contract. Additional minting is allowed. Takes a 1% fee from
every transfer.

It has a ban system, and banned users cannot migrate their $LITh
tokens, and a migration mechanism between $LITh to $LITx token with a
1:1 rate.

Will transfer all remaining balance on the contract to the ecosystem
named address after the specified time, which will be set during
deployment, pass, and will no longer support migrations.

It has bridge support and can mint the desired amount of tokens
according to the bridge order. Security of the bridge is not included
in the audit scope.

It has the following attributes:
○ Name: LITx token
○ Symbol: LITx
○ Decimals: 18
○ Total supply: 5.417.770.823

● LITh - upgradeable ERC20 token that mints all initial supply to the
deployer. It is used for simulating $LITh to $LITx migration.
It has the following rates to distribute tokens:

○ Name: LITh token
○ Symbol: LITh
○ Decimals: 18
○ Initial Supply: 100.000

● MerkleDistributor - an abstract contract for distributing tokens to
predefined addresses using the Merkle Tree Algorithm.

● FeeDistributor - upgradeable contract used for distributing $LITx
fees collected from user transfers. It is planned to distribute the
collected fees in 4 separate titles: developer, ecosystem, marketing,
and reward.

Uses MerkleDistributor contract to verify whether the reward is
collected or not. If the reward has not been collected within thirty
days, the uncollected amount carries over to the next round of the
reward distribution. It is not within the scope of this audit whether
the rewards will be distributed fairly and whether the ecosystem and
marketing shares will be spent for their own purposes.

www.hacken.io

It uses the following ratios for token distribution:
○ Ecosystem: 60%
○ Marketing: 20%
○ Developers: 10%
○ Rewards: 10%

● BannedUpgradeable - an abstract contract that implements a ban
system. It has the properties of banning and unbanning addresses.

Privileged roles
● The owner of the LITx contract has the following privileges:

○ Can change fee distributor contract address.
○ Can ban and unban an address.

● The bridge privilege can mint the desired amount of $LITx to any
address.

● The owner of FeeDistributor contract has the following privileges:
○ Can change the developer addresses.
○ Can change Merkle root, and if not claimed, rewards are left

with the previous root to be used for next month’s rewards.
Users cannot claim their rewards anymore.

○ Can distribute collected fees to developers, ecosystem, and
marketing addresses with the mentioned ratio.

Risks
● The amount of the reward to be distributed is not controlled on

chains. It is done according to the Merkle proof set by the owner. A
misrepresentation of the proof may result in an under-or
over-distribution of rewards.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Owners can distribute user rewards

In the FeeDistributer contract, when “distribute” is called, the user
allocated rewards are part of the pool being distributed.

This may cause users to be unable to collect their rewards due to an
insufficient contract balance.

File: ./contracts/FeeDistributor.sol

Contract: FeeDistributor

Function: distribute

Recommendation: Change the distribution logic so it does not depend
on the contract balance at the time of distribution.

Ensure there is always enough balance for the users to claim rewards
by keeping the amount protected on the contract.

Status: Fixed (Revised commit: e8e9a89)

2. Banned users can still transfer tokens

The ban system is implemented on LITx contract by adding “nonBanned”
modifier to the “_transfer” function, but the ban system only checks
the sender of the message.

This means an address can still transfer its funds using approval.

File: ./contracts/LITx.sol

Contract: LITx

Functions: _transfer

Recommendation: Edit the "nonBanned" modifier and give both sender
and recipient addresses as input parameters on the transfer function.

Status: Fixed (Revised commit: e8e9a89)

3. Cannot claim rewards in case of root change

In the FeeDistributer contract, the owner can change Merkle Root.
However, if users do not claim rewards before root change, it is
impossible to claim after the change operation.

This issue may cause users not to be able to collect their rewards.

File: ./contracts/FeeDistributor.sol

Contract: FeeDistributor

www.hacken.io

Recommendation: Migrate to a solution that only updates the max
claimable amount, instead of having atomic claims that depend on a
specific MerkleRoot - e.g. a signature-based claimable balance
update.

Status: Fixed (Revised commit: e8e9a89)

Medium

1. No return value check for token transfers

ERC20 transfer functions return bool after transfers, and it is
important to implement a return value check for this return value.

This issue leads to unintended behavior of contract about token
transfer result.

Files: ./contracts/LITx.sol, ./contracts/FeeDistributor.sol

Contracts: LITx, FeeDistributor

Functions: migrate, claim, _distributeDevelopers

Recommendation: Implement a return value check for token transfers.

Status: Fixed (Revised commit: e03e497)

Low

1. Unlocked pragma

Unlocked pragmas may cause the contract to be deployed with a
different Solidity version from the tested.

This can lead to encountering undiscovered bugs.

Files: ./contracts/LITx.sol, ./contracts/FeeDistributor.sol,
./contracts/utils/MerkleDistributor.sol, ./contracts/utils/LITh.sol,
./contracts/utils/BannedUpgradeable.sol

Contracts: LITx, FeeDistributor, MerkleDistributor, LITh,
BannedUpgradeable

Recommendation: Lock pragma to a specific compiler version.

Status: Fixed (Revised commit: e8e9a89)

2. Redundant variables

“reward” and “REWARD” variables have no implementation on the
FeeDistributor contract.

Keeping redundant variables increases Gas costs during deployment.

Files: ./contracts/FeeDistributor.sol

Contract: FeeDistributor

Recommendation: Remove redundant variables.

Status: Fixed (Revised commit: e8e9a89)

www.hacken.io

3. Missing zero address validation.

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Files: ./contracts/FeeDistributor.sol, ./contracts/LITx.sol

Contracts: FeeDistributor, LITx

Functions:__FeeDistributor_init_unchained, __LITxToken_init_unchained

Recommendation: Implement zero address checks

Status: Fixed (Revised commit: e8e9a89)

4. Usage of public visibility instead of external

“setMerkleRoot”, “distribute”, “setDevelopers” and “initialize”
functions in FeeDistributor сontract and “initialize” function in
LITx сontract and “initialize” function in LITh contract are declared
as public but are not called by contracts.

Files: ./contracts/utils/LITh.sol, ./contracts/FeeDistributor.sol,
./contracts/LITx.sol

Contracts: LITh, FeeDistributor, LITx

Functions: setMerkleRoot, distribute, setDevelopers, initialize

Recommendation: Convert to external. Making functions external
instead of public reduces Gas costs during execution.

Status: Fixed (Revised commit: e8e9a89)

5. Incorrect usage of memory pointer

In LITx contract “initialize”, “__LITxToken_init”,
“__LITxToken_init_unchained” functions’ pointer of “chains_”
parameter is memory, but it should be calldata.

File: ./contracts/LITx.sol

Contract: LITx

Functions: initialize, __LITxToken_init, __LITxToken_init_unchained

Recommendation: Change memory pointers to calldata.

Status: Fixed (Revised commit: e8e9a89)

6. Not possible to support future chains

LITx contract is keeping supported chains with a "mapping" and those
are being set during deployment. However, there is no function to add
new chains to the "mapping".

With the current version of the contract, it is impossible to support
different chains other than the set ones during deployment.

www.hacken.io

File: ./contracts/LITx.sol

Contract: LITx

Recommendation: Add a function to the contract to add new chains to
the "chains” mapping.

Status: Fixed (Revised commit: e8e9a89)

7. Redundant nonBanned modifier usage

Usage of the nonBanned modifier is redundant. The _transfer function,
called later, already has this modifier.

File: ./contracts/LITx.sol

Contract: LITx

Function: migrate

Recommendation: Remove redundant modifier usage.

Status: Reported

8. Redundant usage of SafeERC20

In the LITx contract “migrate” function, "safeTransferFrom" method is
used to transfer $LITh token and in the FeeDistributer contract,
”claim”, “distribute” and “_distributeDevelopers” functions,
“safeTransfer” method is used to transfer $LITx token.

Since both $LITh and $LITx tokens conform to the ERC20 standard, it
is not required to use “safeTransferFrom” and “safeTransfer”
functions nor the SafeERC20 contract.

Files: ./contracts/LITx.sol, ./contracts/FeeDistributor.sol

Contracts: LITx, FeeDistributor

Functions: migrate, claim, _distributeDevelopers

Recommendation: Remove SafeERC20 import and its implementations, use
ERC20 transfers and implement a return value check.

Status: Fixed (Revised commit: e8e9a89)

9. Redundant usage of reentrancy guard

In the LITx contract “migrate” function, the reentrancy guard is
used. However, the “migrate” function makes one external function
call to the "migrateToken" contract, which is the $LITx token and
thus a trusted address. It is not required to use a reentrancy guard
in this case.

File: ./contracts/LITx.sol

Contract: LITx

Function: migrate

Recommendation: Remove the reentrancy guard from the contract.

www.hacken.io

Status: Fixed (Revised commit: e8e9a89)

10. Redundant import

SafeERC20Upgradeable contract is imported in FeeDistributor and LITx
contracts; however, not implemented in this contract because not
needed.

Files: ./contracts/LITx.sol, ./contracts/FeeDistributor.sol

Contract: LITx, FeeDistributor

Recommendation: Remove SafeERC20Upgradeable import.

Status: Fixed (Revised commit: e03e497)

11. Redundant variable

MerkleRootChanged event is created in FeeDistributor contracts but
not used. It is required to emit events on critical state changes;
therefore, MerkleRootChanged event can be emitted in distribute
function.

Files: ./contracts/FeeDistributor.sol

Contract: FeeDistributor

Recommendation: Emit MerkleRootChanged event in distribute function.

Status: Mitigated (with customer notice)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

B: Lith LLC - Recommended Actions

Next Steps
1. Identify critical assets to scope. We recommend to scope 5 assets:

- ERC-20 Smart Contract

- https://lithtoken.io

- iOS app

- Android app

- Network

2. Pentest 4 assets:
- https://lithtoken.io

- iOS app

- Android app

- Network

3. Set up crowdsourced security for all assets:
- ERC-20 Smart Contract

- https://lithtoken.io

- iOS app

- Android app

- Network

www.hacken.io

