
Customer: TeraBlock
Date: April 20th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TeraBlock.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://terablock.com

Timeline 04.04.2022 – 20.04.2022

Changelog
06.04.2022 – Initial Review
18.04.2022 - Remediation Check
20.04.2022 - Remediation Check 2

www.hacken.io

https://terablock.com

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Disclaimers 13

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by TeraBlock (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/TeraBlock/tb-stake-v1-contracts - Initial Audit
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/eea11145ecff7

97b05e20283905b422b82aa15a5 - Remediation Check
Commit:

07427df50fc509de887a009489872a6202180a1e - Initial Audit
eea11145ecff797b05e20283905b422b82aa15a5 - Remediation Check

Documentation: No -
https://docs.google.com/document/d/1_vhOTHjb06P1wbFtTY_yDFLRO-YhAdAk-qRq4_V
-aSM/edit
JS tests: Yes -
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/07427df50fc509de887
a009489872a62
Contracts:

Pool.sol
PoolFactory.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

https://github.com/TeraBlock/tb-stake-v1-contracts
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/eea11145ecff797b05e20283905b422b82aa15a5
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/eea11145ecff797b05e20283905b422b82aa15a5
https://docs.google.com/document/d/1_vhOTHjb06P1wbFtTY_yDFLRO-YhAdAk-qRq4_V-aSM/edit
https://docs.google.com/document/d/1_vhOTHjb06P1wbFtTY_yDFLRO-YhAdAk-qRq4_V-aSM/edit
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/07427df50fc509de887a009489872a62
https://github.com/TeraBlock/tb-stake-v1-contracts/tree/07427df50fc509de887a009489872a62

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided functional requirements and technical requirements.
The total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 10 out of 10. Code follows official language
style guides. Unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. Smart contracts of the
project follow the best practices, and the project has a clear
architecture.

Security score
As a result of the audit, security engineers found 1 critical, 3 high, 4
medium, and 7 low severity issues. The security score is 0 out of 10.

As a result of the second review, security engineers found 1 low severity
issue. All previously found issues were fixed. The security score is 10 out
of 10.

All found issues are displayed in the “Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical issues were found.

High

1. The owner can Withdraw Both Reward and Staking Tokens.

The owner can withdraw both reward and staking tokens from the pools.
This withdrawal can be done at any time without informing the users,
which can lead to sudden balance changes in the pools. From its name
(recoverTokens()), it is thought that this function was created to
recover tokens stuck in the pool. However, a definite conclusion
could not be reached due to the lack of documentation.

This can lead to sudden token depletion in the pool.

Contracts: Pool.sol, PoolFactory.sol,

Function: recoverTokens()

Recommendation: Remove this functionality or inform users in the
documentation.

Status: Fixed

2. Missing Staking Token Balance Check.

Staking tokens are sent to the user in the form of reward + amount.
However, before this process, only the amount that the user has
deposited in the relevant stake is checked. It is not checked whether
there are enough tokens in the system.

This can lead to reverts in the withdrawal process.

Contracts: Pool.sol

Function: withdraw()

Recommendation: Implement control mechanisms

Status: Mitigated (The customer approved that this behaviour is
expected)

Medium

1. Missing Allowance Check.

The safeTransferFrom() function, of ERC20, is being called in other
functions, but they never check if there is enough allowance before
calling it.

This can lead to reverts in the calling functions.

Contracts: Pool.sol, PoolFactory.sol

Function: deposit(), depositRewards()

www.hacken.io

Recommendation: Add control mechanisms for allowances. Adjust the
allowance before calling the safeTransferFrom() function.

Status: Fixed

2. Possible Out-of-Gas Exception.

Iterating over stakeIds and amounts may lead to enormous Gas
consumption due to the arrays’ size.

This could lead to a potential Out-of-Gas exception.

Contracts: PoolFactory.sol

Function: withdrawBatch()

Recommendation: Implement array size limitations.

Status: Mitigated

3. Redundant Subtraction.

1 is subtracted from stakeId. This operation could be performed
off-chain, and a valid id can be passed.

Contracts: Pool.sol

Function: withdraw(), getRewardsEarned(), isEligibleForRewards()

Recommendation: Remove redundant subtraction.

Status: Fixed

Low

1. Checks-Effects-Interactions Pattern Violation

The state variables of a pool are updated after depositing or
withdrawing tokens from the farm contract.

Contracts: PoolFactory.sol

Function: depositRewards()

Recommendation: Make token transfers after user balances are
decreased or zeroed.

Status: Fixed

2. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Contracts: AccessProtected.sol, Pool.sol,

Function: setAdmin(), getStakes(), getTotalStaked(),
getRewardsEarned()

Recommendation: Implement zero address checks.
www.hacken.io

Status: Fixed

3. Outdated Encoder Use

The statement “pragma experimental ABIEncoderV2” is outdated.

Contracts: Pool.sol

Function: -

Recommendation: Use “pragma abicoder v2” instead.

Status: Fixed

4. Use of Hardcoded Values

Hardcoded values are used in computations.

Contracts: Pool.sol

Function: getPeriod()

Recommendation: Move hardcoded values to constants.

Status: Reported

5. Functions That Can be Declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contracts: AccessProtected.sol, Pool.sol, PoolFactory.sol

Function: isAdmin(), mint(), burn(), pause(), unpause(),
recoverTokens(), deposit(), withdrawBatch(), setRewardsDeposited(),
depositRewards(), setStakingToken(), setTGBToken(), recoverTokens(),
getStakes(), getTotalRewardsEarned(), getTotalStaked, poolCount()

Recommendation: Move hardcoded values to constants.

Status: Fixed

6. Floating Pragma

The project uses floating pragma ^0.6.12.

Contracts: AccessProtected.sol, Pool.sol, PoolFactory.sol

Function: -

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed

7. Outdated Solidity Version

Using an old version prevents access to new Solidity security checks.

Contracts: AccessProtected.sol, Pool.sol, PoolFactory.sol

www.hacken.io

Function: -

Recommendation: Consider using one of these versions: 0.8.6, 0.8.9, or 0.8.11.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

