
Customer: CryptoToday
Date: March 8th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
CryptoToday.

Approved by Andrew Matiukhin | CTO Hacken OU
Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type ERC20 token; ERC1155 token; Voting;
Platform EVM
Language Solidity
Methods Architecture Review, Functional Testing, Automated Review,

Manual Review
Repository https://github.com/cryptotodaycom/contracts
Commit 548C1EF24D996A3ADC0557638601D099A5EF745D
Deployed
contract
Technical
Documentation

No

JS tests Yes
Website https://cryptotoday.com
Timeline 27 FEB 2022 – 8 MAR 2022
Changelog 1 MAR 2022 – INITIAL AUDIT

8 MAR 2022 - Second Review

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by CryptoToday (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contract.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/cryptotodaycom/contracts
Commit:

548c1ef24d996a3adc0557638601d099a5ef745d
Technical Documentation: Partial
JS tests: Yes
Contracts:

○ LIST.sol
○ VotingEngine.sol
○ TrooperNFT.sol
○ Signature.sol
○ LISTFuture.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality

The customer provided a whitepaper where tokenonmics is described. The code
has clear comments. Total Documentation Quality score is 8 out of 10.

Code quality

Total CodeQuality score is 10 out of 10. Some code duplications. Some logic
is covered with unit tests.

Architecture quality

Architecture quality score is 5 out of 10. The voting engine does not
actually designed for votes.

Security score

As a result of the audit, security engineers found no issues. Security
score is 10 out of 10. All found issues are displayed in the “Issues
overview” section of the report.

Summary

According to the assessment, the Customer's smart contracts have the
following score: 9.3

Notice

1. 87% of the token supply is moved to a VotingEngine contract that is
fully controlled by Owners. The off-chain part of the system
responsible for funds transfers is OUT of the audit scope and can not
be verified by Hacken.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the first audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical severity issues were found.

High

1. Misleading contract name and purpose.

The VotingEngine contract is not designed for any fair voting and is
used as funds storage for the project owners. Funds withdrawal can be
done at any time and with any amount.

Contracts: VotingEngine.sol

Recommendation: re-design voting functionality and move funds storage
functionality to separate contract.

Status: Mitigated. All voting logic is off-chain.

2. Transfer fail.

The function can fail on ethers transfer if a msg.sender is a
contract with fallback function (e.g. multi-sig wallet with advanced
fallback mechanisms).

Contracts: VotingEngine.sol

Function: endSale

Recommendation: use call to transfer ethers or ensure that the owner
is not a contract.

Status: Mitigated. The Customer approved that address is not a
contract.

Medium

1. Constructor overwhelmed.

The code can fail if a list of token receivers is big enough.

Contracts: LISTFuture.sol

Recommendation: ensure that list of receivers is not big enough for
the function to fail on gaslimit. Or use a separate function for
tokens distribution.

Status: Mitigated. The Customer approved that the gas limit would not
be reached.

Low

1. Redundant import.

www.hacken.io

“@openzeppelin/contracts/token/ERC20/ERC20.sol" import is redundant.

Contracts: LIST.sol

Recommendation: remove unused imports.

Status: Fixed.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

