

Customer: DotFinance
Date: September 28th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
DotFinance.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Transfer controller; DEFI
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/Dot-Finance/Dot
Commit 8FB1031EB9D874233B75EFC744279A679747D54B
Technical
Documentation

YES

JS tests NO
Timeline 24 AUG 2021 – 28 SEP 2021
Changelog 13 SEP 2021 – INITIAL AUDIT

28 SEP 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 9

Disclaimers 11

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by DotFinance (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between August 26th, 2021 - September 13th, 2021. The
second code review conducted on September 28th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/Dot-Finance/Dot
Commit:
 8fb1031eb9d874233b75efc744279a679747d54b
Technical Documentation: Yes
JS tests: No

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence
▪ Style guide violation

▪ Costly Loop
▪ ERC20 API violation

▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 high, 2 medium, 2 low,
and 4 informational severity issues.

As a result of the second review, security engineers found 2 medium, 1 low,
and 4 informational severity issues.

Notice:

The project contains neither Unit Tests nor other types of tests. We strongly
recommend the Customer cover at least the main functionality with unit tests.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

Graph 2. The distribution of vulnerabilities after the second review.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

1. The compiler version should be updated to the latest.

Status: fixed

2. There is the ability to change the Helper version of PinkPool.sol after
the contract was deployed and used by users.

Contracts:PinkPool.sol

Function: setHelper

Status: fixed.

 Medium

1. Reward token decimals value is hardcoded in function apy() of
PinkPool.sol contract, but reward token can be changed and set by the
owner.

Contracts:PinkPool.sol

Function: apy

Status: open.

2. There are lots of hardcoded ‘magic values’ like 1e18 in the contracts.
The hardcoded values should be removed from functions especially if
they are related to changeable entities.

Status: open.

 Low

There are set of values like:
a. pinkPrice
b. flipPrice
c. rewardPerToken

which are calculated or received from helper (by calling another
contract). These values can be cached (saved to fields) by block time
to decrease gas usage.

Contracts:PinkPool.sol

Status: open.

www.hacken.io

 Informational

1. We strongly recommend you add proper values of error messages in
require validation (related to all code).

2. It is better to use language construction for the operations it was
created for. Modifiers provide the way to do some validations and
restrictions, due to solidity language philosophy. We recommend you
change the modifiers like PinkPool.updateReward to function view.

3. It may be better to check the balance and validate the existence of
the needed amount of pink token, before calling _flipToPink in the
getReward function of PinkPool.sol contract.

4. Event emission should be added to all functions which change the pool
configurations.

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

As a result of the audit, security engineers found 2 high, 2 medium, 2 low,
and 4 informational severity issues.

As a result of the second review, security engineers found 2 medium, 1 low,
and 4 informational severity issues.

Notice:

The project contains neither Unit Tests nor other types of tests. We strongly
recommend the Customer cover at least the main functionality with unit tests.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bugfree status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

