

Customer: ScaleSwap
Date: May 6th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
ScaleSwap.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Multiple purposes contracts
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/scaleswap-io/contracts
Commit B2449EA1CB5FCB16315877F84DFA36CDEE99EA48
Deployed
contract

Timeline 29 APR 2021 – 06 MAY 2021
Changelog 06 MAY 2021 – INITIAL AUDIT

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

Audit overview 7

Conclusion 8

Disclaimers 9

	

Introduction

Hacken OÜ (Consultant) was contracted by ScaleSwap (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
April 29th, 2021 – May 06th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/scaleswap-io/contracts
Commit: B2449EA1CB5FCB16315877F84DFA36CDEE99EA48
Files:

├── ScaleSwapToken.sol
├── interfaces
│ ├── IERC20Detailed.sol
│ ├── IERC20DetailedBurnable.sol
│ └── TokensaleCommon.sol
├── mocks
│ └── TokenMock.sol
└── tokensale
 ├── ScaleSwap.sol
 ├── ScaleSwapAccessControl.sol
 └── ScaleSwapFactory.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item
Code review § Reentrancy

§ Ownership Takeover
§ Timestamp Dependence
§ Gas Limit and Loops
§ DoS with (Unexpected) Throw
§ DoS with Block Gas Limit
§ Transaction-Ordering Dependence
§ Style guide violation
§ Costly Loop
§ ERC20 API violation
§ Unchecked external call
§ Unchecked math
§ Unsafe type inference
§ Implicit visibility level
§ Deployment Consistency
§ Repository Consistency
§ Data Consistency

Functional review § Business Logics Review
§ Functionality Checks
§ Access Control & Authorization
§ Escrow manipulation
§ Token Supply manipulation
§ Assets integrity
§ User Balances manipulation
§ Data Consistency manipulation
§ Kill-Switch Mechanism
§ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are

well-secured.	

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 low, and 2 informational issues during
the audit.

Graph 1. The distribution of vulnerabilities after the first review.

Low
50%

Informational
50%

Low Informational

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview

 Critical

No critical issues were found.

 High

No high issues were found.

 Medium

No medium issues were found.

 Low

1. Administrative keys are highly permissive and should be
moved to a multi-signature wallet.

Customer notice: “That is what we do in production”.
2. In the event that a transaction fails due to overflow, this

is not explicitly stated to the user as the contract takes
advantage of the 0.8.0 and above overflow arithmetic. Where
possible, this should be made explicit.

Customer notice: “Ok, we will proceed with such behaviour. It's
ok for us as soon as our clients should only use our UI to
communicate with contracts and all edge cases are validated before
sending a transaction”.

 Lowest / Code style / Best Practice

1. Token approval and fee changes should emit an event.

2. Multiple typos exist within interface code, namely those
within MetaTxToken.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in the As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 2 low, and 2 informational issues during
the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

