

Customer: Kyber

Date: April 4th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Kyber.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Governance

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/KyberNetwork/dao_sc/tree/katana

Commit 616906ABEED505F8D29186E147EB6736A914F49A

Timeline 19 MAR 2021 – 23 MAR 2021

Changelog 23 MAR 2021 – INITIAL AUDIT
4 APR 2021 – ADDING CUSTOMER NOTICE

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 24

Disclaimers .. 25

Introduction

Hacken OÜ (Consultant) was contracted by Kyber (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings of
the security assessment of Customer's smart contract and its code review

conducted between March 19th, 2021 – March 23rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:
 https://github.com/KyberNetwork/dao_sc/tree/katana
Commit:
 616906abeed505f8d29186e147eb6736a914f49a
Files:

/contracts/governance/KyberGovernance.sol
/contracts/governance/votingPowerStrategy/EpochVotingPowerStrategy.sol
/contracts/governance/executor/DefaultProposalValidator.sol
/contracts/governance/executor/DefaultExecutorWithTimelock.sol
/contracts/governance/executor/DefaultExecutor.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 high, 5 medium, and 1 informational issue during the
audit. All issues are acknowledged and accepted by the Customer.

Notice:

1. The audit scope is limited to governance contracts. Its results may not be
extrapolated to another contracts in the repository.

2. Writing universal contracts that can be used with different multiple
implementations is considered a bad practice in solidity contracts. Such
approach usually brings extra complexity and gas consumption.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

High
14%

Medium
72%

Informational
14%

High Medium Informational

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

KyberGovernance.sol

Description

KyberGovernance is a governance contract.

Imports

KyberGovernance has following imports:

• import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol'

• import {PermissionAdmin} from '@kyber.network/utils-
sc/contracts/PermissionAdmin.sol'

• import {IKyberGovernance} from
'../interfaces/governance/IKyberGovernance.sol'

• import {IExecutorWithTimelock} from
'../interfaces/governance/IExecutorWithTimelock.sol'

• import {IVotingPowerStrategy} from
'../interfaces/governance/IVotingPowerStrategy.sol'

• import {IProposalValidator} from
'../interfaces/governance/IProposalValidator.sol'

• import {getChainId} from '../misc/Helpers.sol'

Inheritance

KyberGovernance is IKyberGovernance, PermissionAdmin.

Usages

KyberGovernance contract has following usages:

• SafeMath for uint256.

Structs

KyberGovernance contract has no custom data structures.

Enums

KyberGovernance contract has no custom enums.

Events

KyberGovernance contract has no custom events.

Modifiers
KyberGovernance has no custom modifiers.

Fields

KyberGovernance contract has following fields and constants:

• bytes32 public constant DOMAIN_TYPEHASH =
keccak256('EIP712Domain(string name,uint256 chainId,address
verifyingContract)');

• bytes32 public constant VOTE_EMITTED_TYPEHASH =
keccak256('VoteEmitted(uint256 id,uint256 optionBitMask)');

• string public constant NAME = 'Kyber Governance';

• address private _daoOperator;

• uint256 private _proposalsCount;

• mapping(uint256 => Proposal) private _proposals;

• mapping(address => bool) private _authorizedExecutors;

• mapping(address => bool) private _authorizedVotingPowerStrategies;

Functions

KyberGovernance has following public and external functions:

• constructor
Description
Initializes the contract. Sets adimin and dao operator addresses.

Executors and votingStratages are also provided.
Visibility
public
Input parameters

o address admin
o address daoOperator
o address[] memory executors
o address[] memory votingPowerStrategies

Constraints
None
Events emit
Emits the ExecutorAuthorized and VotingPowerStrategyAuthorized
events.
Output

 None

• createBinaryProposal

Description
Creates a Binary Proposal.
Visibility
external
Input parameters

o IExecutorWithTimelock executor,
o IVotingPowerStrategy strategy,
o string[] memory options,
o uint256 startTime,
o uint256 endTime,
o string memory link

Constraints
o executor should be authorized.
o strategy should be authorized.
o executor should validate input params.

Events emit
Emits the BinaryProposalCreated event.
Output

 uint256 proposalId

• createBinaryProposal
Description
Creates a Binary Proposal. Creates a Generic Proposal. It only gets the

winning option without any executions.
Visibility
external
Input parameters

o IExecutorWithTimelock executor
o IVotingPowerStrategy strategy
o BinaryProposalParams memory executionParams
o uint256 startTime
o uint256 endTime
o string memory link

Constraints
o executionParams should be provided.
o executionParams should be of the same length.
o executor should be authorized.
o strategy should be authorized.
o executor should validate input params.

Events emit
Emits the GenericProposalCreated event.

Output
 uint256 proposalId

• cancel
Description
Cancels a Proposal.In the currenct version is only callable by the

_daoOperator. Though, if if the IProposalValidator implementation will allow,
the function may be callable by anyone.

Visibility
external
Input parameters

o uint256 proposalId
Constraints

o Proposal should exist.
o Should not be in a final state.

Events emit
Emits the ProposalCanceled event.
Output

 None

• queue
Description
Queue a proposal if it is succeeded.
Visibility
external
Input parameters

o uint256 proposalId
Constraints

o Proposal should exist.
o Proposal should be Binary.
o Should be in the Succeeded state.

Events emit
Emits the ProposalQueued event.
Output

 None

• execute
Description
Execute a proposal.
Visibility
external
Input parameters

o uint256 proposalId

Constraints
o Proposal should exist.
o Proposal should be Binary.
o Should be in the Queued state.

Events emit
Emits the ProposalExecuted event.
Output

 None

• submitVote
Description
Submit a vote for a proposal by message sender.
Visibility
external
Input parameters

o uint256 proposalId
o uint256 optionBitMask

Constraints
o Proposal should exist.
o Should be in the Active state.

Events emit
Emits the VoteEmittedevent.
Output

 None

• submitVoteBySignature
Description
Submit a vote for a proposal by signature.
Visibility
external
Input parameters

o uint256 proposalId
o uint256 optionBitMask
o uint8 v
o bytes32 r
o bytes32 s

Constraints
o Proposal should exist.
o Signature should be valid.
o Should be in the Active state.

Events emit
Emits the VoteEmittedevent.

Output
 None

• handleVotingPowerChanged
Description
Changes voting power of a voter.
Visibility
external
Input parameters

o uint256 proposalId
o uint256 optionBitMask
o uint8 v
o bytes32 r
o bytes32 s

Constraints
o Should be called from a strategy contract

Events emit
Emits the VotingPowerChanged.
Output

 None

• transferDaoOperator
Description
Transfers dao operator to another address. Should be called from a

current dao operator.

• authorizeExecutors, unauthorizeExecutors,
authorizeVotingPowerStrategies, unauthorizeVotingPowerStrategies
Description

 Admin functions to change corresponding contract parameters.

• isExecutorAuthorized, isVotingPowerStrategyAuthorized,
getDaoOperator, getProposalsCount, getProposalById,
getProposalVoteDataById, getVoteOnProposal, getProposalStat
Description
Simple view functions.

EpochVotingPowerStrategy.sol

Description

EpochVotingPowerStrategy – Voting Power Strategy contract based on epoch
mechanism.

Imports

EpochVotingPowerStrategy has following imports:

• import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol'

• import {IVotingPowerStrategy} from
'../../interfaces/governance/IVotingPowerStrategy.sol'

• import {IKyberGovernance} from
'../../interfaces/governance/IKyberGovernance.sol'

• import {IKyberStaking} from '../../interfaces/staking/IKyberStaking.sol'

• import {EpochUtils} from '../../misc/EpochUtils.sol'

Inheritance

EpochVotingPowerStrategy is IVotingPowerStrategy, EpochUtils.

Usages

EpochVotingPowerStrategy contract has following usages:

• SafeMath for uint256.

Structs

EpochVotingPowerStrategy contract has no custom data structures.

Enums

EpochVotingPowerStrategy contract has no custom enums.

Events

EpochVotingPowerStrategy contract has no custom events.

Modifiers
EpochVotingPowerStrategy has following custom modifiers:

• onlyStaking – check if a caller is staking.

• onlyGovernance – check if a caller is governance.

Fields

EpochVotingPowerStrategy contract has following fields and constants:

• uint256 public constant MAX_PROPOSAL_PER_EPOCH = 10

• IKyberStaking public immutable staking

• IKyberGovernance public immutable governance

• mapping(uint256 => uint256[]) internal epochProposals

Functions

EpochVotingPowerStrategy has following public and external functions:

• constructor
Description
Initializes the contract. Sets governance and staking addresses.
public
Input parameters

o IKyberGovernance _governance
o IKyberStaking _staking

Constraints
None
Events emit
None
Output

 None

• handleProposalCreation
Description
Add a proposal ID to a current epoch.
Input parameters

o uint256 proposalId
o uint256 startTime
o uint256 – parameter exists but not used to be compliant with the

interface.
Constraints

o Should only be called from a governance contract.
Events emit
None
Output

 None

• handleProposalCancellation
Description
Removes a proposal ID from a current epoch.
Input parameters

o uint256 proposalId
Constraints

o Should only be called from a governance contract.
Events emit
None
Output

 None

• handleProposalCancellation
Description
Returns voter's voting power.
Input parameters

o address voter
o uint256
o uint256

Constraints
o Should only be called from a governance contract.

Events emit
None
Output

 uint256 votingPower

• handleWithdrawal
Description
Handle user withdraw from staking contract.
Input parameters

o address user
o uint256 /*reduceAmount*/

Constraints
o Should only be called from a staking contract.

Events emit
None
Output

• getVotingPower, validateProposalCreation, getMaxVotingPower,
getListProposalIds
Description
Simple view functions.

DefaultProposalValidator.sol

Description

DefaultProposalValidator is a contract with view or pure functions used to
validate values or to retrieve data.

DefaultExecutorWithTimelock.sol

Description

DefaultExecutorWithTimelock is a contract that can queue, execute, cancel
transactions voted by Governance.

Imports

DefaultExecutorWithTimelock has following imports:

• import {IExecutorWithTimelock} from
'../../interfaces/governance/IExecutorWithTimelock.sol'

• import {IKyberGovernance} from
'../../interfaces/governance/IKyberGovernance.sol'

• import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol'

Inheritance

DefaultExecutorWithTimelock is IExecutorWithTimelock.

Usages

DefaultExecutorWithTimelock contract has following usages:

• SafeMath for uint256.

Structs

DefaultExecutorWithTimelock contract has no custom data structures.

Enums

DefaultExecutorWithTimelock contract has no custom enums.

Events

DefaultExecutorWithTimelock contract has no custom events.

Modifiers

DefaultExecutorWithTimelock has following modifiers:

• onlyAdmin – check for a corresponding caller.

• onlyTimelock – check for a corresponding caller.

• onlyPendingAdmin – check for a corresponding caller.

Fields

DefaultExecutorWithTimelock contract has following fields and constants:

• uint256 public immutable override GRACE_PERIOD

• uint256 public immutable override MINIMUM_DELAY

• uint256 public immutable override MAXIMUM_DELAY

• address private _admin

• address private _pendingAdmin

• uint256 private _delay

• mapping(bytes32 => bool) private _queuedTransactions

Functions

DefaultExecutorWithTimelock has following public and external functions:

• constructor
Description
Initializes the contract. Sets admin, delay, grace period for queued txs,

MINIMUM_DELAY and MAXIMUM_DELAY values.
Visibility
public
Input parameters

o address admin
o uint256 delay
o uint256 gracePeriod
o uint256 minimumDelay
o uint256 maximumDelay

Constraints
o delay should be between minimumDelay and maximumDelay.

Events emit
Emits the NewDelay and NewAdmin events.
Output

 None

• setDelay, setPendingAdmin
Description
Allows the contract to change corresponding parameters.

• acceptAdmin
Description
Allows pending admin to accept his permissions.

• queueTransaction
Description
Queues a transaction for execution.

Visibility
public
Input parameters

o address target
o uint256 value
o string memory signature
o bytes memory data
o uint256 executionTime
o bool withDelegatecall

Constraints
o Could only be called from the admin account.
o executionTime should exceed or be equal to a current time + delay.

Events emit
Emits the QueuedAction event.
Output

 bytes32 – action hash.

• cancelTransaction
Description
Cancel a transaction.
Visibility
public
Input parameters

o address target
o uint256 value
o string memory signature
o bytes memory data
o uint256 executionTime
o bool withDelegatecall

Constraints
o Could only be called from the admin account.

Events emit
Emits the CancelledAction event.
Output

 bytes32 – action hash.

• executeTransaction
Description
Execute a transaction.
Visibility
public
Input parameters

o address target
o uint256 value
o string memory signature
o bytes memory data
o uint256 executionTime
o bool withDelegatecall

Constraints
o Could only be called from the admin account.
o Transaction should be queued.
o Current time should be after execution time and before grace

period pass.
o Transaction should be sent successfully.

Events emit
Emits the ExecutedAction event.
Output

 bytes memory

• getAdmin, getPendingAdmin, getDelay, isActionQueued,
isProposalOverGracePeriod
Description
Simple view functions.

Audit overview

 Critical

No critical issues were found.

 High

1. Admin can be set by voting. This can lead to lost of admin permissions by
owners.

Contract: DefaultExecutorWithTimelock.sol

Recommendation: allow admin change only for current admin.

Customer notice: By design, the admin of all executor timelocks will be
the KyberGovernance contract, thus, the only way to change the admin
role is via a proposal. That’s the reason why we require the sender of

updating admin to be the timelock contract itself.

 Medium

1. Reviewed contracts have high cohesion. This leads to increased gas
consumption because of regular external calls between contracts.

Contracts: KyberGovernance.sol, DefaultProposalValidator.sol,
DefaultExecutorWithTimelock.sol, EpochVotingPowerStrategy.sol.

Examples:

o handleProposalCancellation function of the
EpochVotingPowerStrategy can be called only from a governance
contract and calls the same governance to retrieve some data.

Recommendation: we recommend decreasing number of external calls
between those contracts as much as it’s possible.

Customer notice: There are multiple voting power strategies that can be
implemented in the future and the governance contract doesn’t know
which data each voting power will need to update their logic., Thus, we
pass only the proposal id when calling handleProposalCancellation. We
decided that having the flexibility for new voting power strategy
implementations was more crucial than having lower gas consumption.

2. MIN_VOTING_DURATION, MAX_VOTING_OPTIONS,
VOTE_DIFFERENTIAL, MINIMUM_QUORUM constants are not validated
for lower and upper limits when initialized..

Contract: DefaultProposalValidator.sol

Recommendation: set up upper and lower limits.

Customer notice: These (constant) configurations will be carefully
decided before we deploy all contracts, thus, we don’t really want to add
any checks for the limitation of each value. If the KyberGovernance wants
to change any configuration, there will be a proposal to vote for an
upgrade.

3. GRACE_PERIOD, MINIMUM_DELAY, MAXIMUM_DELAY constants are not
validated for lower and upper limits when initialized.

Contract: DefaultExecutorWithTimelock.sol

Recommendation: set up upper and lower limits.

Customer notice: These (constant) configurations will be carefully
decided before we deploy all contracts, thus, we don’t really want to add
any checks for the limitation of each value. If the KyberGovernance wants
to change any configuration, there will be a proposal to vote for an
upgrade.

4. DefaultExecutorWithTimelock and DefaultProposalValidator are both
used by the KyberGovernance as IExecutorWithTimelock. Though, those
contracts implement different interfaces.

Contract: KyberGovernance.sol

Recommendation: use separate addresses IExecutorWithTimelock and
IProposalValidator contracts in the KyberGovernance contract.

Customer notice: As the ProposalValidator and ExecutorWithTimelock
contracts are tightly coupled, it makes sense to have a contract to inherit
both of these contracts and use that as the Executor instead of keeping
them separate.

5. Function may fail due to block gas limit if number of epochProposals of a
current epoch is big enough. This may lead to fails of staking functions.

Contract: EpochVotingPowerStrategy.sol

Function: handleWithdrawal

Recommendation: limit number of proposals for each epoch.

Customer notice: In the validateProposalCreation function of
EpochVotingPowerStrategy, we already validate that the number of
proposals for each epoch must not be greater than
MAX_PROPOSAL_PER_EPOCH, which is likely to be at most 10 proposals
per epoch.

 Low

No low severity issues were found.

 Informational / Code style / Best Practice

1. Some code style issues were found by static code analyzers.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 1 high, 5 medium, and 1 informational issue during the

audit. All issues are acknowledged and accepted by the Customer.

Notice:

1. The audit scope is limited to governance contracts. Its results may not be
extrapolated to another contracts in the repository.

2. Writing universal contracts that can be used with different multiple
implementations is considered a bad practice in solidity contracts. Such
approach usually brings extra complexity and gas consumption.

Violations in the following categories were found and addressed to Customer:

Category Check Item Comments

Code review ▪ Costly loops ▪ The code may fail due to
block gas limit because of
data processing in a loop.

 ▪ Access Control &
Authorization

▪ Access to the Timelock
contract can be lost

 ▪ Style guide violation

▪ Some code style issues were

found

 ▪ Architecture review ▪ Architecture of the reviewed
contracts is not optimal.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

